9 research outputs found

    SEDS proteins are a widespread family of bacterial cell wall polymerases

    No full text
    Summary Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan synthetic machinery called the Rod complex. We report that in Bacillus subtilis this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS family of proteins that play essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a new family of peptidoglycan polymerases. Thus, B. subtilis and likely most bacteria use two distinct classes of polymerases to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development

    Deconstructing the Chlamydial Cell Wall

    No full text
    The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages
    corecore