38 research outputs found

    Magnetic stimulation for non-homogeneous biological structures

    Get PDF
    BACKGROUND: Magnetic stimulation has gained relatively wide application in studying nervous system structures. This technology has the advantage of reduced excitation of sensory nerve endings, and hence results in quasi-painless action. It has become clinically accepted modality for brain stimulation. However, theoretical and practical solutions for assessment of induced current distribution need more detailed and accurate consideration. Some possible analyses are proposed for distribution of the current induced from excitation current contours of different shape and disposition. Relatively non-difficult solutions are shown, applicable for two- and three-dimensional analysis. METHODS: The boundary conditions for field analysis by the internal Dirichlet problem are introduced, based on the vector potential field excited by external current coils. The feedback from the induced eddy currents is neglected. Finite element modeling is applied for obtaining the electromagnetic fields distribution in a non-homogeneous domain. RESULTS: The distributions were obtained in a non-homogeneous structure comprised of homogeneous layers. A tendency was found of the induced currents to follow paths in lower resistivity layers, deviating from the expected theoretical course for a homogeneous domain. Current density concentrations occur at the boundary between layers, suggesting the possibility for focusing on, or predicting of, a zone of stimulation. CONCLUSION: The theoretical basis and simplified approach for generation of 3D FEM networks for magnetic stimulation analysis are presented, applicable in non-homogeneous and non-linear media. The inconveniences of introducing external excitation currents are avoided. Thus, the possibilities are improved for analysis of distributions induced by time-varying currents from contours of various geometry and position with respect to the medium

    Can ultrasound be used to stimulate nerve tissue?

    Get PDF
    BACKGROUND: The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. METHODS AND RESULTS: A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m(2 )at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. CONCLUSION: The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS

    Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation.

    Get PDF
    Measuring changes in the characteristics of corticospinal output has become a critical part of assessing the impact of motor experience on cortical organization in both the intact and injured human brain. In this protocol we describe a method for systematically assessing training-induced changes in corticospinal output that integrates volumetric anatomical MRI with transcranial magnetic stimulation (TMS). A TMS coil is sited to a target grid superimposed onto a 3D MRI of cortex using a stereotaxic neuronavigation system. Subjects are then required to exercise the first dorsal interosseus (FDI) muscle on two different tasks for a total of 30 min. The protocol allows for reliably and repeatedly detecting changes in corticospinal output to FDI muscle in response to brief periods of motor training

    Transcranial brain stimulation: Past and future

    No full text

    Central or Peripheral Activations of the Facial Nerve?

    No full text
    corecore