13 research outputs found

    HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation

    Get PDF
    Mutations in the Wnt signalling cascade are believed to cause aberrant proliferation of colorectal cells through T-cell factor-4 (TCF4) and its downstream growth-modulating factors. HOXB13 is exclusively expressed in prostate and colorectum. In prostate cancers, HOXB13 negatively regulates β-catenin/TCF4-mediated transactivation and subsequently inhibits cell growth. To study the role of HOXB13 in colorectal tumorigenesis, we evaluated the expression of HOXB13 in 53 colorectal tumours originated from the distal left colon to rectum with their matching normal tissues using quantitative RT–PCR analysis. Expression of HOXB13 is either lost or diminished in 26 out of 42 valid tumours (62%), while expression of TCF4 RNA is not correlated with HOXB13 expression. TCF4 promoter analysis showed that HOXB13 does not regulate TCF4 at the transcriptional level. However, HOXB13 downregulated the expression of TCF4 and its target gene, c-myc, at the protein level and consequently inhibited β-catenin/TCF-mediated signalling. Functionally, forced expression of HOXB13 drove colorectal cancer (CRC) cells into growth suppression. This is the first description of the downregulation of HOXB13 in CRC and its mechanism of action is mediated through the regulation of TCF4 protein stability. Our results suggest that loss of HOXB13 may be an important event for colorectal cell transformation, considering that over 90% of colorectal tumours retain mutations in the APC/β-catenin pathway

    Role of Wnt canonical pathway in hematological malignancies

    Get PDF
    Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and tissues in adults. It has been observed that Wnt/β-catenin signaling pathway is involved in the pathogenesis of many carcinomas. Moreover, Wnt/β-catenin pathway has been revealed to be associated with angiogenesis. Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis

    Loss of Cadherin-Catenin Adhesion System in Invasive Cancer Cells

    No full text
    As described in the previous chapter, the loss of E-cadherin is the key event in epithelial–mesenchymal transition. While downregulation of E-cadherin could occur via aberrant Akt signaling, direct somatic mutations in E-cadherin are frequent in epithelial tumors such as diffuse-type gastric and lobular breast cancers, where they can be found in up to 50% of primary neoplasms (Berx et al. 1998). E-cadherin mutations were also observed in primary endometrial and ovarian carcinomas, albeit with a lower frequency (Risinger et al. 1994; Muta et al. 1996). The consequences of these mutations for EMT and tumor cell invasion are discussed below

    Tumor heterogeneity: biological implications and therapeutic consequences

    No full text
    corecore