30 research outputs found

    Measurements of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device

    Get PDF
    Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    Mechanical response and energy stored during deformation of crystallizing TPU

    Get PDF
    International audienceThe present study investigates the thermomechanical behavior of closed-cell TPU foams. The effects of the density and the loading conditions on the softening, the residual strain and the hysteresis have first been characterized. The thermal responses exhibit numerous particularities. First, a threshold effect in terms of the density on the self-heating has been highlighted. Second, entropic effects are strongly weighted by energetic effects (internal energy variations) during the deformation. Typical changes in the thermal response highlight that SIC and crystallite melting occur during the deformation. The characteristic stretches of this phenomenon evolve with the maximum stretch applied. The lower the density, the lower the crystallinity. In the second part of this study, a complete energy balance is carried out during cyclic deformation of compact and foamed crystallizing TPUs. Results show that viscosity is not the only phenomenon involved in the hysteresis loop formation: a significant part of the mechanical energy brought is not dissipated into heat and is stored by the material when the material changes its microstructure, typically when it is crystallizing. Some of this energy is released during unloading, when melting occurs, but with a different rate, which contributes to the hysteresis loop. The part of the mechanical energy stored by the material has been quantified to investigate the effects of the loading rate and the void volume fraction on the energetic response of TPU. These effects cannot be predicted from the mechanical responses and the present study provides therefore information of importance to better understand and model the effects of the density and the loading conditions on the thermomechanical behavior of closed-cell TPU foams
    corecore