404 research outputs found

    Mapping the domains of CD134 as a functional receptor for feline immunodeficiency virus (FIV)

    Get PDF
    The feline homologue of CD134 (fCD134) is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, strains of FIV differ in their utilisation of CD134; the prototypic strain PPR, requires a minimal determinant in CRD1 of fCD134 to confer near optimal receptor function while strains such as GL8 require additional determinants in the CD134 CRD2. We map this determinant to a loop in CRD2 governing the interaction between the receptor and its ligand; substitution of amino acids S78N,S79Y,K80E restored full viral receptor activity to the CDR2 of human CD134 in the context of feline CD134 with tyrosine-79 appearing to be the critical residue for restoration of receptor function

    Mapping the domains of CD134 as a functional receptor for feline immunodeficiency virus (FIV)

    Get PDF
    The feline homologue of CD134 (fCD134) is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, strains of FIV differ in their utilisation of CD134; the prototypic strain PPR, requires a minimal determinant in CRD1 of fCD134 to confer near optimal receptor function while strains such as GL8 require additional determinants in the CD134 CRD2. We map this determinant to a loop in CRD2 governing the interaction between the receptor and its ligand; substitution of amino acids S78N,S79Y,K80E restored full viral receptor activity to the CDR2 of human CD134 in the context of feline CD134 with tyrosine-79 appearing to be the critical residue for restoration of receptor function

    Detection of SARS-CoV-2 N protein allelic variants by rapid high-throughput CLEIA antigen assay

    Get PDF
    We report the data obtained using an automated chemiluminescence enzyme immunoassay (CLEIA) for rapid antigen detection of SARS-CoV-2 with a number of variants

    Induced pluripotent stem cells in hematology: current and future applications

    Get PDF
    Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation

    Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes.

    Get PDF
    BACKGROUND: Safe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised. METHODS: The pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (psi), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line. RESULTS: To broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer psi, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas psi elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation. CONCLUSION: In contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies

    Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells

    Get PDF
    Acid ceramidase (AC) is a lysosomal cysteine hydrolase that catalyzes the conversion of ceramide into fatty acid and sphingosine. This reaction lowers intracellular ceramide levels and concomitantly generates sphingosine used for sphingosine-1-phosphate (S1P) production. Since increases in ceramide and consequent decreases of S1P reduce proliferation of various cancers, AC might offer a new target for anti-tumor therapy. Here we used CrispR-Cas9-mediated gene editing to delete the gene encoding for AC, ASAH1, in human A375 melanoma cells. ASAH1-null clones show significantly greater accumulation of long-chain saturated ceramides that are substrate for AC. As seen with administration of exogenous ceramide, AC ablation blocks cell cycle progression and accelerates senescence. Importantly, ASAH1-null cells also lose the ability to form cancer-initiating cells and to undergo self-renewal, which is suggestive of a key role for AC in maintaining malignancy and self-renewal of invasive melanoma cells. The results suggest that AC inhibitors might find therapeutic use as adjuvant therapy for advanced melanoma

    Improvement of lipid profile by probiotic/protective cultures: study in a non-carcinogenic small intestinal cell model.

    Get PDF
    Plasma lipid levels are important risk factors for the development of atherosclerosis and coronary heart disease. Previous findings have shown that probiotic bacteria exert positive effects on hypercholesterolemia by lowering serum cholesterol and improving lipid profile that, in turn, leads to a reduced risk of coronary heart disease and atherosclerosis. Most of these studies were carried out with tumoral cell lines that have a metabolism quite different from that of normal cells and may thus respond differently to various stimuli. Here, we demonstrate the beneficial effects of some probiotics on cholesterol levels and pathways in normal small intestinal foetal epithelial tissue cells. The results show that Lactobacillus plantarum strain PCS 26 efficiently removes cholesterol from media, exhibits bile salt hydrolase activity, and up-regulates several genes involved in cholesterol metabolism. This study suggests that Lactobacillus plantarum PCS 26 might act as a liver X receptor agonist and help to improve lipid profiles in hypercholesterolemic patients or even dislipidemias in complex diseases such as the metabolic syndrome

    Development of Feline Immunodeficiency Virus ORF-A (tat) Mutants: In Vitro and in Vivo Characterization

    Get PDF
    AbstractA functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus

    Zika virus induces FOXG1 nuclear displacement and downregulation in human neural progenitors

    Get PDF
    Congenital alterations in the levels of the transcription factor Forkhead box g1 (FOXG1) coding gene trigger "FOXG1 syndrome," a spectrum that recapitulates birth defects found in the "congenital Zika syndrome," such as microcephaly and other neurodevelopmental conditions. Here, we report that Zika virus (ZIKV) infection alters FOXG1 nuclear localization and causes its downregulation, thus impairing expression of genes involved in cell replication and apoptosis in several cell models, including human neural progenitor cells. Growth factors, such as EGF and FGF2, and Thr271 residue located in FOXG1 AKT domain, take part in the nuclear displacement and apoptosis protection, respectively. Finally, by progressive deletion of FOXG1 sequence, we identify the C-terminus and the residues 428-481 as critical domains. Collectively, our data suggest a causal mechanism by which ZIKV affects FOXG1, its target genes, cell cycle progression, and survival of human neural progenitors, thus contributing to microcephaly

    Gene silencing of endothelial von Willebrand factor reduces the susceptibility of human endothelial cells to SARS-CoV-2 infection

    Get PDF
    Mechanisms underlying vascular endothelial susceptibility to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not fully understood. Emerging evidence indicates that patients lacking von Willebrand factor (vWF), an endothelial hallmark, are less severely affected by SARS-CoV-2 infection, yet the precise role of endothelial vWF in modulating coronavirus entry into endothelial cells is unknown. In the present study, we demonstrated that effective gene silencing by short interfering RNA (siRNA) for vWF expression in resting human umbilical vein endothelial cells (HUVECs) significantly reduced by 56% the cellular levels of SARS-CoV-2 genomic RNA. Similar reduction of intracellular SARS-CoV-2 genomic RNA levels was observed in non-activated HUVECs treated with siRNA targeting angiotensin-converting enzyme 2 (ACE2), the cellular gateway to coronavirus. By integrating quantitative information from real-time PCR and high-resolution confocal imaging, we demonstrated that ACE2 gene expression and its plasma membrane localization in HUVECs were both markedly reduced after treatment with siRNA anti-vWF or anti-ACE2. Conversely, siRNA anti-ACE2 did not reduce endothelial vWF gene expression and protein levels. Finally, SARS-CoV-2 infection of viable HUVECs was enhanced by overexpression of vWF, which increased ACE2 levels. Of note, we found a similar increase in interferon-β mRNA levels following transfection with untargeted, anti-vWF or anti-ACE2 siRNA and pcDNA3.1-WT-VWF. We envision that siRNA targeting endothelial vWF will protect against productive endothelial infection by SARS-CoV-2 through downregulation of ACE2 expression and might serve as a novel tool to induce disease resistance by modulating the regulatory role of vWF on ACE2 expression
    corecore