6,577 research outputs found

    Spinwave damping in the two-dimensional ferromagnetic XY model

    Get PDF
    The effect of damping of spinwaves in a two-dimensional classical ferromagnetic XY model is considered. The damping rate Γq\Gamma_{q} is calculated using the leading diagrams due to the quartic-order deviations from the harmonic spin Hamiltonian. The resulting four-dimensional integrals are evaluated by extending the techniques developed by Gilat and others for spectral density types of integrals. Γq\Gamma_{q} is included into the memory function formalism due to Reiter and Solander, and Menezes, to determine the dynamic structure function S(q,ω)S(q,\omega). For the infinite sized system, the memory function approach is found to give non-divergent spinwave peaks, and a smooth nonzero background intensity (``plateau'' or distributed intensity) for the whole range of frequencies below the spinwave peak. The background amplitude relative to the spinwave peak rises with temperature, and eventually becomes higher than the spinwave peak, where it appears as a central peak. For finite-sized systems, there are multiple sequences of weak peaks on both sides of the spinwave peaks whose number and positions depend on the system size and wavevector in integer units of 2π/L2\pi/L. These dynamical finite size effects are explained in the memory function analysis as due to either spinwave difference processes below the spinwave peak or sum processes above the spinwave peak. These features are also found in classical Monte Carlo -- Spin-Dynamics simulations.Comment: 20 two-column page

    Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances

    Get PDF
    We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 G and 1000 G. Close to two broad Feshbach resonances we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of the binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave Feshbach resonances we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave Li-Cs Feshbach resonances as compared to our previous work [Pires \textit{et al.}, Phys. Rev. Lett. \textbf{112}, 250404 (2014)]. We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers

    XMM-Newton reveals a candidate period for the spin of the "Magnificent Seven" neutron star RX J1605.3+3249

    Full text link
    The group of thermally emitting isolated neutron stars (INSs) known as the "Magnificent Seven" (M7) is unique among the various neutron star populations. Crustal heating by means of magnetic field decay and an evolutionary link with magnetars may explain why these objects rotate more slowly and have higher thermal luminosities and magnetic field intensities than standard pulsars of similar age. The third brightest INS, RX J1605.3+3249, is the only object amidst the seven still lacking a detected periodicity. We observed the source with the XMM-Newton Observatory for 60 ks aiming at unveiling the neutron star rotation rate and investigating its spectrum in detail. A periodic signal at P=3.387864(16) s, most likely the neutron star spin period, is detected at the 4-sigma confidence level. The coherent combination of the new data with a past XMM-Newton EPIC-pn observation of the source constrains the pulsar spin-down rate at the 2-sigma confidence level, implying a dipolar magnetic field of B~7.4e13 G. If confirmed, RX J1605.3+3249 would be the neutron star with the highest dipolar field amongst the M7. The spectrum of the source shows evidence of a cool blackbody component, as well as for the presence of two broad absorption features. Furthermore, high-resolution spectroscopy with the RGS cameras confirms the presence of a narrow absorption feature at energy 0.57 keV in the co-added spectrum of the source, also seen in other thermally emitting isolated neutron stars. Phase-resolved spectroscopy, as well as a dedicated observing campaign aimed at determining a timing solution, will give invaluable constraints on the neutron star geometry and will allow one to confirm the high value of spin down, which would place the source closer to a magnetar than any other M7 INS.Comment: 12 pages, 6 figures; accepted for publication in A&A (revised version after language editing; results unchanged
    • …
    corecore