12,518 research outputs found

    Large classical universes emerging from quantum cosmology

    Full text link
    It is generally believed that one cannot obtain a large Universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the Universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the Universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the Universe leave the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the abovementioned problem, induces a large acceleration around the quantum bounce, forcing the Universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any transplanckian problem.Comment: 8 pages, 1 figur

    Quantum Stephani exact cosmological solutions and the selection of time variable

    Full text link
    We study perfect fluid Stephani quantum cosmological model. In the present work the Schutz's variational formalism which recovers the notion of time is applied. This gives rise to Wheeler-DeWitt equation for the scale factor. We use the eigenfunctions in order to construct wave packets for each case. We study the time-dependent behavior of the expectation value of the scale factor, using many-worlds and deBroglie-Bohm interpretations of quantum mechanics.Comment: 19 pages, 7 figure

    Adaptabilidade e estabilidade como critérios para seleção de genótipos de girassol.

    Get PDF
    O objetivo deste trabalho foi comparar critérios para seleção de genótipos de girassol com base na média geral obtida em vários locais e sua decomposição em ambientes favoráveis e desfavoráveis e por meio de outros métodos de análise de adaptabilidade e estabilidade, como os de Eberhart & Russell, Lin & Binns, Carneiro e Carvalho et al. Foram analisados dados obtidos entre os anos de 1999 e 2004 na Rede Nacional de Ensaios de Girassol, coordenada pela Embrapa Soja e que conta com a participação de empresas públicas e privadas. Os caracteres avaliados foram rendimento de grãos e de óleo (kg ha-1). A análise da decomposição da média geral em médias de ambientes favoráveis e desfavoráveis (método da indicação com base na decomposição da média geral - IDMG) foi o critério mais adequado para a indicação de genótipos. A análise de regressão contribuiu com informações adicionais, indicando a responsividade e previsibilidade dos genótipos diante das mudanças ambientais

    Perturbations in Bouncing Cosmological Models

    Full text link
    I describe the features and general properties of bouncing models and the evolution of cosmological perturbations on such backgrounds. I will outline possible observational consequences of the existence of a bounce in the primordial Universe and I will make a comparison of these models with standard long inflationary scenarios.Comment: 9 pages, no figure

    Hamiltonian Poincar\'e Gauge Theory of Gravitation

    Full text link
    We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3)SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3)SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.Comment: 38 pages, plainTe

    QED vacuum between an unusual pair of plates

    Full text link
    We consider the photon field between an unusual configuration of infinite parallel plates: a perfectly conducting plate (ϵ→∞)(\epsilon\to\infty) and an infinitely permeable one μ→∞)\mu\to\infty). After quantizing the vector potential in the Coulomb gauge, we obtain explicit expressions for the vacuum expectation values of field operators of the form 0_0 and <B^iB^j>0<{\hat B}_i{\hat B}_j>_0. These field correlators allow us to reobtain the Casimir effect for this set up and to discuss the light velocity shift caused by the presence of plates (Scharnhorst effect \cite{Scharnhorst,Barton,BarScharn}) for both scalar and spinor QED.Comment: Latex, 16 pages, no figure

    Noncommutative Geometry and Cosmology

    Full text link
    We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comparative study of the universe evolution in four different scenarios: the classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative. The comparison is rendered transparent by the use of the Bohmian formalism of quantum trajectories. As a result of our analysis, we found that noncommutativity can modify significantly the universe evolution, but cannot alter its singular behavior in the classical context. Quantum effects, on the other hand, can originate non-singular periodic universes in both commutative and noncommutative cases. The quantum noncommutative model is shown to present interesting properties, as the capability to give rise to non-trivial dynamics in situations where its commutative counterpart is necessarily static.Comment: 22 pages, 5 figures, substantial changes in the presentation, results are the same, to appear in Physical Review

    Falsifying Tree Level String Motivated Bouncing Cosmologies

    Full text link
    The string effective action at tree level contains, in its bosonic sector, the Einstein-Hilbert term, the dilaton, and the axion, besides scalar and gauge fields coming from the Ramond-Ramond sector. The reduction to four dimensions brings to scene moduli fields. We generalize this effective action by introducing two arbitrary parameters, ω\omega and mm, connected with the dilaton and axion couplings. In this way, more general frameworks can be analyzed. Regular solutions with a bounce can be obtained for a range of (negative) values of the parameter ω\omega which, however, exclude the pure string configuration (ω=−1\omega = - 1). We study the evolution of scalar perturbations in such cosmological scenarios. The predicted primordial power spectrum decreases with the wavenumber with spectral index ns=−2n_s=-2, in contradiction with the results of the WMAPWMAP. Hence, all such effective string motivated cosmological bouncing models seem to be ruled out, at least at the tree level approximation.Comment: Latex file, 19 pages, 3 figures in eps forma

    Quantum Cosmology in Scalar-Tensor Theories With Non Minimal Coupling

    Get PDF
    Quantization in the minisuperspace of non minimal scalar-tensor theories leads to a partial differential equation which is non separable. Through a conformal transformation we can recast the Wheeler-DeWitt equation in an integrable form, which corresponds to the minimal coupling case, whose general solution is known. Performing the inverse conformal transformation in the solution so found, we can construct the corresponding one in the original frame. This procedure can also be employed with the bohmian trajectories. In this way, we can study the classical limit of some solutions of this quantum model. While the classical limit of these solutions occurs for small scale factors in the Einstein's frame, it happens for small values of the scalar field non minimally coupled to gravity in the Jordan's frame, which includes large scale factors.Comment: latex, 18 page

    HDAC8 and STAT3 Repress BMF Gene Activity in Colon Cancer Cells

    Get PDF
    Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy
    • …
    corecore