16,452 research outputs found

    Scalar Perturbations in Scalar Field Quantum Cosmology

    Full text link
    In this paper it is shown how to obtain the simplest equations for the Mukhanov-Sasaki variables describing quantum linear scalar perturbations in the case of scalar fields without potential term. This was done through the implementation of canonical transformations at the classical level, and unitary transformations at the quantum level, without ever using any classical background equation, and it completes the simplification initiated in investigations by Langlois \cite{langlois}, and Pinho and Pinto-Neto \cite{emanuel2} for this case. These equations were then used to calculate the spectrum index nsn_s of quantum scalar perturbations of a non-singular inflationary quantum background model, which starts at infinity past from flat space-time with Planckian size spacelike hypersurfaces, and inflates due to a quantum cosmological effect, until it makes an analytical graceful exit from this inflationary epoch to a decelerated classical stiff matter expansion phase. The result is ns=3n_s=3, incompatible with observations.Comment: 10 pages, 2 figures, accepted version to Physical Review D 7

    Seismic Vulnerability of the Italian Roadway Bridge Stock

    Get PDF
    This study focuses on the seismic vulnerability evaluation of the Italian roadway bridge stock, within the framework of a Civil Protection sponsored project. A comprehensive database of existing bridges (17,000 bridges with different level of knowledge) was implemented. At the core of the study stands a procedure for automatically carrying out state-of-the-art analytical evaluation of fragility curves for two performance levels – damage and collapse – on an individual bridge basis. A webGIS was developed to handle data and results. The main outputs are maps of bridge seismic risk (from the fragilities and the hazard maps) at the national level and real-time scenario damage-probability maps (from the fragilities and the scenario shake maps). In the latter case the webGIS also performs network analysis to identify routes to be followed by rescue teams. Consistency of the fragility derivation over the entire bridge stock is regarded as a major advantage of the adopted approach

    Identificação do processo de disseminação da informação na Embrapa: o uso do Google Docs.

    Get PDF
    Neste trabalho, apresenta-se o uso do Googledocs, especificamente como um survey, aplicado aos profissionais da informação da Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Foi criado um questionário eletrônico composto de 14 questões com o objetivo de conhecer o processo de comunicação de novos materiais adquiridos pelas 40 bibliotecas existentes na empresa, as quais são coordenadas pelo Sistema Embrapa de Bibliotecas (SEB), o questionário eletrônico foi enviado a todos os bibliotecários responsáveis pelas bibliotecas do Sistema

    Electron cloud buildup and impedance effects on beam dynamics in the future circular e+e− collider and experimental characterization of thin TiZrV vacuum chamber coatings

    Get PDF
    The Future Circular Collider FCC-ee is a study toward a high luminosity electron-positron collider with a centre-of-mass energy from 91 GeV to 365 GeV. Due to the beam parameters and pipe dimensions, collective effects and electron cloud can be very critical aspects for the machine and can represent the main limitations to its performance. An estimation of the electron cloud build up in the main machine components and an impedance model are required to analyze the induced instabilities and to find solutions for their mitigation. Special attention has been given to the resistive wall impedance associated with a layer of nonevaporable getter (NEG) coating on the vacuum chamber required for electron cloud mitigation. The studies presented in this paper will show that minimizing the thickness of this coating layer is mandatory to increase the single bunch instability thresholds in the proposed lepton collider at 45.6 GeV. For this reason, NEG thin films with thicknesses below 250 nm have been investigated by means of numerical simulations to minimize the resistive wall impedance. In parallel, an extensive measurement campaign was performed at CERN to characterize these thin films, with the purpose of finding the minimum effective thickness satisfying vacuum and electron cloud requirements

    Possible Stellar Metallicity Enhancements from the Accretion of Planets

    Get PDF
    A number of recently discovered extrasolar planet candidates have surprisingly small orbits, which may indicate that considerable orbital migration takes place in protoplanetary systems. A natural consequence of orbital migration is for a series of planets to be accreted, destroyed, and then thoroughly mixed into the convective envelope of the central star. We study the ramifications of planet accretion for the final main sequence metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr, stars with masses near 1 solar mass are predicted to have virtually no metallicity enhancement. On the other hand, early F and late A type stars with masses of 1.5--2.0 solar masses can experience significant metallicity enhancements due to their considerably smaller convection zones during the first 10 Myr of pre-main-sequence evolution. We show that the metallicities of an aggregate of unevolved F stars are consistent with an average star accreting about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter

    Effective action in DSR1 quantum field theory

    Full text link
    We present the one-loop effective action of a quantum scalar field with DSR1 space-time symmetry as a sum over field modes. The effective action has real and imaginary parts and manifest charge conjugation asymmetry, which provides an alternative theoretical setting to the study of the particle-antiparticle asymmetry in nature.Comment: 8 page

    A backwards approach to the formation of disk galaxies I. Stellar and gas content

    Get PDF
    A simple chemical enrichment code is described where the two basic mechanisms driving the evolution of the ages and metallicities of the stellar populations are the star formation efficiency and the fraction of gas ejected from the galaxy. Using the observed Tully-Fisher relation in different passbands as a constraint, it is found that a steep correlation between the maximum disk rotational velocity and star formation efficiency must exist either for a linear or a quadratic Schmidt law. Outflows do not play a major role. The redshift evolution of disk galaxies is explored, showing that a significant change in the slope of the Tully-Fisher relation is expected because of the different age distributions of the stellar components in high and low-mass disk galaxies. The slope measured in the rest frame B,K bands is found to change from 3(B); 4(K) at z=0 up to 4.5(B); 5(K) at z~1, with a slight dependence on formation redshift.Comment: Accepted for publication in ApJ. Uses emulateapj.sty. 12 pages with 10 embedded EPS figure
    • …
    corecore