32 research outputs found

    Reevaluation of the P30(p,Îł)S31 astrophysical reaction rate from a study of the T=1/2 mirror nuclei, S31 and P31

    Get PDF
    The P30(p,Îł)S31 reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in S31 and P31 were populated in the C12(Ne20,n) and C12(Ne20,p) reactions, respectively, at a beam energy of 32 MeV, and their resulting Îłdecay was detected with the Gammasphere array. Around half the relevant proton unbound states in S31 corresponding to the Gamow window for the P30(p,Îł)S31 reaction were identified. The properties of the unobserved states were inferred from mirror symmetry using our extended data on P31. The implications of this new spectroscopic information for the P30(p,Îł)S31 reaction rate are considered and recommendations for future work with radioactive beams are discussed

    Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs

    Get PDF
    Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients’ own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined

    Reduced growth, increased vascular area, and reduced response to cisplatin in CD13-overexpressing human ovarian cancer xenografts.

    No full text
    PURPOSE: Expression of aminopeptidase N/CD13 can be detected in several solid tumor types. Thus far, the role of CD13 in ovarian cancer has not been studied. We have investigated the expression pattern and biological function of CD13 in ovarian cancer. EXPERIMENTAL DESIGN: First, we studied the expression of CD13 in ovarian cancer tissue of 15 patients representing three different histological types (5 patients each) by immunohistochemistry. We then stably transfected the IGROV-1 human ovarian cancer cell line with a CD13 expression vector and examined the biological effect of CD13 in vitro and in vivo. RESULTS: The expression of CD13 in ovarian cancer was associated with the histological subtype: CD13 expression in tumor cells was observed in 80-100% of the patients with a serous or mucinous carcinoma and in only 20% of the clear cell carcinoma patients. In all patients' tumor samples, CD13-positive blood vessels were present. CD13 overexpression in IGROV-1 cells did not affect in vitro cell growth and sensitivity to doxorubicin, cisplatin, or gemcitabine. CD13 overexpression reduced invasion in Matrigel, which appeared to be independent of the aminopeptidase activity of CD13. Furthermore, the growth rate of IGROV-1/CD13 xenografts was reduced. The area of the vessel lumens was enlarged in a small percentage of vessels in the CD13-overexpressing xenografts. In addition, the CD13-overexpressing tumors were less sensitive to cisplatin. CONCLUSIONS: CD13 is expressed in tumor as well as endothelial cells in human ovarian cancer. Our results suggest that CD13 overexpression affects ovarian cancer growth, vascular architecture, and response to chemotherapy. Further elucidation of the mechanism of the observed effects of CD13 is warranted to better understand its role in the pathophysiology of ovarian cancer
    corecore