294 research outputs found

    Ferroportin disease: Pathogenesis, diagnosis and treatment

    Get PDF
    Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the fer-roportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation

    Molecular genetics and control of iron metabolism in hemochromatosis

    Get PDF
    Background and Objectives. Hereditary hemochromatosis (HC) is an inborn error of iron metabolism that leads to progressive iron overload. Considerable advances in the knowledge of molecular events in iron metabolism have been recently obtained. These molecular findings, the cloning of the gene responsible for HC (HFE gene) and the results of preliminary studies on the HFE protein prompted us to review this topic. information Sources. The material examined in this review article includes papers and abstracts published in the Journals covered by the Science Citation Index(C) and Medline(C). The authors have been working in the field of HC for several years and have contributed eleven of the quoted papers. State of Art and Perspective. HC is now recognized as the genetic disease characterized by the homozygosity for the Cys --> Tyr substitution at position 282 (C282Y) of the HFE protein. The mutation abolishes the association of the HFE protein with beta(2)-microglobulin (beta(2)M), making the complex unable to gain the cell surface. Thus HC is an example of abnormal trafficking of the corresponding proteins. It Is clear by the analysis of its structure that HFE protein is not an iron transporter itself, but has a regulatory role in iron metabolism. Its peculiar localization in the crypt cells of the small intestine suggests an important role in iron trafficking at this level. However, other proteins are involved in iron uptake, as the recently cloned Nramp2, the first iron transporter discovered in mammalians. Nramp2 has a recognized role both in the intestinal iron uptake and in the iron transport within the erythroblast. The relationships between HFE and Nramp2 are still unexplored. The recent association of HFE gene with transferrin receptor (TfR) in trophoblast cells opens new possibilities on its role in cellular iron uptake. The existence of other forms of genetic iron overload suggests that the scenario of iron proteins is not yet fully defined. Further studies in this field will contribute to our knowledge of iron metabolism regulation in humans. (C)1998, Ferrata Storti Foundation

    Non-HFE Hepatic Iron Overload.

    Get PDF
    Numerous clinical entities have now been identified to cause pathologic iron accumulation in the liver. Some are well described and have a verified hereditary basis; in others the genetic basis is still speculative, while in several cases nongenetic iron-loading factors are apparent. The non-HFE hemochromatosis syndromes identifies a subgroup of hereditary iron loading disorders that share with classic HFE-hemochromatosis, the autosomal recessive trait, the pathogenic basis (i.e., lack of hepcidin synthesis or activity), and key clinical features. Yet, they are caused by pathogenic mutations in other genes, such as transferrin receptor 2 (TFR2), hepcidin (HAMP), hemojuvelin (HJV), and ferroportin (FPN), and, unlike HFE-hemochromatosis, are not restricted to Caucasians. Ferroportin disease, the most common non-HFE hereditary iron-loading disorder, is caused by a loss of iron export function of FPN resulting in early and preferential iron accumulation in Kupffer cells and macrophages with high ferritin levels and low-to-normal transferrin saturation. This autosomal dominant disorder has milder expressivity than hemochromatosis. Other much rarer genetic disorders are associated with hepatic iron load, but the clinical picture is usually dominated by symptoms and signs due to failure of other organs (e. g., anemia in atransferrinemia or neurologic defects in aceruloplasminemia). Finally, in the context of various necro-inflammatory or disease processes (i.e., chronic viral or metabolic liver diseases), regional or local iron accumulation may occur that aggravates the clinical course of the underlying disease or limits efficacy of therapy

    Sudden Onset of Lower Abdominal Pain Without Peritonitis or Ileus

    Get PDF
    A patient presented with sudden, unexplained lower abdominal pain without peritonism or signs of infection or inflammatory reaction, but with recent bloody stools and a history of radiation therapy, diabetes and immunosuppression. Plain abdominal x-ray showed only air-fluid levels and air distention of the colon, but a later abdominal CT scan revealed extensive gas gangrene of the colon. The patient’s clinical status rapidly worsened. Elective surgical rectosigmoid debridement did not prevent the patient’s death. In conclusion, the diagnosis of ‘spontaneous’ life-threatening gas gangrene requires a high degree of clinical suspicion and allows life-saving surgical intervention

    Challenges in diagnosis and management of acute hepatic porphyrias: from an uncommon pediatric onset to innovative treatments and perspectives

    Get PDF
    Acute hepatic porphyrias (AHPs) are a family of four rare genetic diseases resulting from a deficiency in one of the enzymes involved in heme biosynthesis. AHP patients can experience potentially life-threatening acute attacks, characterized by severe abdominal pain, along with other signs and symptoms including nausea, mental confusion, hyponatraemia, hypertension, tachycardia and muscle weakness. Some patients also experience chronic manifestations and long-term complications, such as chronic pain syndrome, neuropathy and porphyria-associated kidney disease. Most symptomatic patients have only a few attacks in their lifetime; nevertheless, some experience frequent attacks that result in ongoing symptoms and a significant negative impact on their quality of life (QoL). Initial diagnosis of AHP can be made with a test for urinary porphobilinogen, -aminolaevulinic acid and porphyrins using a single random (spot) sample. However, diagnosis is frequently missed or delayed, often for years, because the clinical symptoms of AHP are non-specific and mimic other more common disorders. Delayed diagnosis is of concern as some commonly used medications can trigger or exacerbate acute attacks, and untreated attacks can become severe, potentially leading to permanent neurological damage or fatality. Other attack triggers include hormonal fluctuations in women, stress, alcohol and low-calorie diets, which should be avoided in patients where possible. For the management of attacks, intravenous hemin is approved, whereas new therapeutic approaches are currently being investigated as a baseline therapy for prevention of attacks and improvement of QoL. Among these, a novel siRNA-based agent, givosiran, has shown very promising results in a recently concluded Phase III trial and has been approved for the management of AHPs. Here, we propose a challenging case study-with a very unusual pediatric onset of variegate porphyria-as a starting point to summarize the main clinical aspects (namely, clinical manifestations, diagnostic challenges, and therapeutic management) of AHPs, with a focus on the latest therapeutic innovations

    The SMAD pathway is required for hepcidin response during endoplasmic reticulum stress

    Get PDF
    Hepcidin, the iron hormone, is regulated by a number of stimulatory and inhibitory signals. The cAMP responsive element binding protein 3-like 3, CREB3L3, mediates hepcidin response to endoplasmic reticulum (ER) stress. In this study we asked whether hepcidin response to ER stress also requires the SMAD1/5/8 pathway that has a major role in hepcidin regulation in response to iron and other stimuli. We analyzed hepcidin mRNA expression and promoter activity in response to ER stressors in HepG2 cells in the presence of the BMP type I receptor inhibitor LDN-193189, mutated hepcidin promoter or siRNA against different SMAD proteins. We then used a similar approach in vivo in wild-type, Smad1/5 or Creb3l3 -/- animals undergoing ER stress. In vitro, LDN-193189 prevented hepcidin mRNA induction by different ER stressors. Seemingly, mutation of a BMP-responsive element in the hepcidin promoter prevented ER stress-mediated upregulation. Moreover, in vitro silencing of SMAD proteins by siRNA, in particular SMAD5, blunted hepcidin response to ER stress. On the contrary, hepcidin induction by ER stress was maintained when using antibodies against canonical BMP receptor ligands. In vivo, hepcidin was induced by ER stress and prevented by LDN-193189. In addition, in Smad1/5 knock-out mice, ER stress was unable to induce hepcidin expression. Finally, in Creb3l3 knock-out mice, in response to ER stress, SMAD1/5 were correctly phosphorylated and hepcidin induction was still appreciable, although to a lesser extent as compared to control mice. In conclusion, our study indicates that hepcidin induction by ER stress involves the central regulatory SMAD1/5 pathway

    Serum and Liver Iron Differently Regulate the Bone Morphogenetic Protein 6 (BMP6)-SMAD Signaling Pathway in Mice

    Get PDF
    The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. Although liver iron content is independently positively correlated with hepatic Bmp6 messenger RNA (mRNA) expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. Conclusion: Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, whereas the hepatic Erk1/2 signaling pathway is not activated by iron in vivo
    • …
    corecore