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Background and Objectives. Hereditary hemochro-
matosis (HC) is an inborn error of iron metabolism
that leads to progressive iron overload. Considerable
advances in the knowledge of molecular events in
iron metabolism have been recently obtained. These
molecular findings, the cloning of the gene respon-
sible for HC (HFE gene) and the results of preliminary
studies on the HFE protein prompted us to review
this topic.

Information Sources. The material examined in this
review article includes papers and abstracts pub-
lished in the Journals covered by the Science Cita-
tion Index© and Medline©. The authors have been
working in the field of HC for several years and have
contributed eleven of the quoted papers.

State of Art and Perspective. HC is now recognized
as the genetic disease characterized by the homozy-
gosity for the Cys→Tyr substitution at position 282
(C282Y) of the HFE protein. The mutation abolishes
the association of the HFE protein with b2- m i c r o g l o b-
ulin (b2M), making the complex unable to gain the
cell surface. Thus HC is an example of abnormal traf-
ficking of the corresponding proteins. It is clear by
the analysis of its structure that HFE protein is not
an iron transporter itself, but has a regulatory role in
iron metabolism. Its peculiar localization in the crypt
cells of the small intestine suggests an important
role in iron trafficking at this level. However, other
proteins are involved in iron uptake, as the recently
cloned Nramp2, the first iron transporter discovered
in mammalians. Nramp2 has a recognized role both
in the intestinal iron uptake and in the iron transport
within the erythroblast. The relationships between
HFE and Nramp2 are still unexplored. The recent
association of HFE gene with transferrin receptor
(TfR) in trophoblast cells opens new possibilities on
its role in cellular iron uptake. The existence of oth-
er forms of genetic iron overload suggests that the
scenario of iron proteins is not yet fully defined. Fur-
ther studies in this field will contribute to our knowl-
edge of iron metabolism regulation in humans.
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Hemochromatosis (HC) is an inherited reces-
sive disorder causing high intestinal iron
absorption and clinical symptoms related to

excessive iron deposition in parenchymal cells of the
liver, pancreas, heart and other organs. HC is the
most common recessive disorder among Cau-
casians. For a complete review on all aspects of the
disease the readers are referred to a recent paper in
this journal.1

Considerable advances in the knowledge of the
molecular events of iron delivery to cells by transfer-
rin, the molecular control of cellular iron metabolism
and of molecular genetics of disorders characterized
by iron overload have been obtained over recent
years. The major steps of these advances have been
the following: a) the identification of the mecha-
nisms of action of iron regulatory proteins (IRP1 and
IRP2), which modulate in an iron-dependent way,
the availability of iron proteins such as transferrin
receptor and ferritin;2 b) the cloning of HFE, the gene
responsible for hemochromatosis, which surprising-
ly resulted to be an MHC-related gene;3 c) the recog-
nition of the first iron-transporter in mammalians,
Nramp2, a member of the Nramp gene family, which
revealed an unexpected link between iron transport
and host defense.4 , 5

This review will focus on recent advances in mole-
cular biology of iron metabolism and iron overload,
also attempting to outline the molecular mechanism
of intestinal iron absorption under physiological
conditions and its derangement in HC. In addition,
it will show that the genetic disorders causing iron
overload extend beyond the HFE-related hemochro-
m a t o s i s .

The HFE gene and molecular genetics
of HC

In August 1996 an American biotechnological
company, Mercator Genetics, cloned the gene
responsible for HC using a classical approach of
positional cloning.3 Formerly named HLA-H (H for
Hemochromatosis), it was then redefined HFE by
the WHO Nomenclature Committee for Factors of the
HLA system.6 HFE is an atypical HLA-class I-like
gene, mapping approximately 4 Megabases telom-
eric to HLA-A.3 A schematic structure of the gene is
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shown in Figure 1 and its main features are reported
in Table 1. HFE is expressed ubiquitously at low lev-
els; its expression is slightly more evident in liver and
small intestine, tissues believed to be affected in HC.3

Since the first report it was considered as a strong
candidate gene for HC, as most patients were carri-
ers, at the homozygote state, of a m i s s e n s e m u t a t i o n ,
changing cysteine at position 282 to tyrosine
(C282Y), a change introduced by the substitution
G→A at position 845 of the gene.3 Although this
change could have been a simple polymorphism in
linkage with the causal mutation, the substitution
introduces a non-conservative change in the HFE
molecule, that disrupts an S-S bond between the a3
domain of the molecule and b2- m i c r o g l o b u l i n
(b2M). The causality for the mutation was indirectly
supported by the animal model of b2-M knock out
mice, who develop a type of iron overload indistin-
guishable from human hemochromatosis.7 - 9

Several studies have confirmed that C282Y is the
most prevalent mutation in hemochromatosis.1 0 - 1 4

However, the frequency of the mutation is variable.
Studies on selected Australian families of Scottish and
Irish origin have shown a 100% segregation of the
mutation with the disease.1 0 Among patients with
severe iron overload homozygosity for C282Y attains
approximately 90% in Northern Europe1 1 and about
83% in two American series.3 , 1 2 In Southern Europe it

accounts for 64-76% of severely iron-loaded
p a t i e n t s .1 3 , 1 4 Studies on normal populations have
shown that the incidence of C282Y mutation refle c t s
the distribution of the disorder.1 5

A second mutation was identified in the original
work in the coding sequence of the gene, a C→G sub-
stitution at position 187 within the gene, changing
histidine at position 63 to aspartic acid (H63D). The
localization of the two mutations is shown in Figure
1. H63D occurs in the a1 domain of the molecule
and does not hamper the interaction with b2M, as
shown in a model of human embryonic kidney cells
transfected with normal and mutant HFE cDNAs.1 6

However, H63D is found with an increased frequen-
cy in the affected subjects heterozygous for C282Y in
different populations.3 , 1 1 , 1 2 , 1 3 Recently, it has been
shown that also homozygotes for H63D are also
enriched among HFE patients.1 7 Thus, there is a mod-
estly increased risk to develop iron overload associ-
ated with H63D.1 8 Since this mutation is frequent in
normal patients, it represents an example of a com-
mon variant with a modest effect that rarely produces
an affected phenotype.1 8 It is possible that it leads to
iron overload only in cooperation with other genetic
or environmental factors.1 9 Since the H63D mutant
protein does not hamper the association with b2M ,1 6

the iron absorption deregulation caused by this
mutation must be achieved through a mechanism
different from the C282Y mutation.

Extensive sequencing of the HFE gene in patients
with severe iron overload, negative for C282Y failed
to reveal other mutations in the coding sequences of
the gene or in intron-exon boundaries.3 , 1 3 , 2 0 The only
exception is a frameshift deletion (deletion of a cyto-
sine) in the coding sequence, which leads to a pre-
mature stop codon downstream in the deletion; this
change has been found at the heterozygous state in
a single male patient aged 60 from England,2 1 b u t
the inheritance of the mutation could not be demon-
strated in the family.

The identification of the HFE gene has stimulated
research on the corresponding protein. The data in so
far obtained allow us to revisit the issue of iron
absorption deregulation in HC.

The molecular defect in HFE
In the absence of an active excretory mechanism,

body iron homeostasis is primarily dependent on reg-
ulation of iron absorption from the small intestine. In
genetic HC this regulation is defective, and dietary iron
absorption is high and inappropriate to the levels of
body iron stores.2 2 The molecular pathways responsi-
ble for the tight control of iron absorption in humans
and, particularly, for the derangement of intestinal
iron uptake-transfer in HC, are still unknown. In this
context, understanding the role of the HFE protein in
intestinal iron absorption may be instrumental for
clarifying the whole scenario of iron metabolism in
humans. 

Table 1. Main features of the HFE gene.

Gene type MCH class-I atypical gene
Genomic localization 6p22
Genomic structure 12 Kb DNA

7 exons (the 7th is non coding)*
Housekeeping gene promoter ?°

Expression Ubiquitous (low levels), except 
brain
Liver and small intestine (higher 
levels)

Type of transcript Unique transcript  (about 4 Kb)
Homologies HLA-A2, HLA G

Fc-receptor

*It contains one poly (A) addition signal (3); °the 5’ upstream region lacks
classical TATA and CAAT boxes and shows a relatively GC rich region (55).

Figure 1. Structure of the HFE gene and localization of the
two mutations associated with HC.
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Iron proteins and intestinal iron absorption
Traditionally, transferrin  (Tf), transferrin receptor,

(TfR), and ferritins are considered as the key proteins
in iron metabolism involved in serum transport, cel-
lular uptake and tissue storage of the metal, respec-
t i v e l y .2 3 Iron uptake involves Tf-iron binding to its spe-
c i fic cellular receptor (TfR), Tf-TfR complex entering
in the cell by endocytosis and apotransferrin-TfR recy-
cling after iron release.2 4 Inside the cell, iron is stored
as soluble ferritin, a multimeric protein composed of
heavy (H) and light (L) chains. Intracellular iron
homeostasis is maintained through the regulation of
the synthesis of ferritin and transferrin receptor in a
coordinate and opposite manner.2 5 This task is
achieved through the functioning of two cytoplasmic
proteins called iron regulatory proteins 1 and 2 (IRP-1
and IRP-2) which bind in an iron-dependent way to
iron responsive elements (IRE) in untranslated regions
of ferritin and transferrin receptor mRNA. IRP-1 has
two mutually exclusive functions, which are switched
by changes in an 4Fe-4S cluster: under conditions of
iron deficiency in the cellular labile iron pool (LIP)
the cluster is disassembled, IRP-1 binds to IRE and
decreases the synthesis of ferritin but enhances that
of transferrin receptor, thus providing the cell with
readily available iron. Conversely, when iron is abun-
dant, the cluster is reconstituted, IRP-1 dissociates
from IRE acquiring aconitase function and iron
sequestration prevails over iron uptake.2, 26-27 I R P - 2
controls the expression of ferritin and transferrin
receptor mRNAs with a specificity and an effic a c y
similar to those of IRP-1, but lacks an iron sulfur clus-
ter, is regulated by iron through proteolysis and is
differentially expressed in various tissues. In addition,
IRP-2 is differentially modulated under some patho-
physiological situations.2 8 - 2 9

The intestinal (e.g. duodenal) epithelial cell is the
main physiologic site of iron absorption and has a
central role in governing body iron homeostasis.2 9

Entry of ionic iron in the duodenal mucosal cell is
possibly mediated by a specific brush border recep-
tor. In spite of several studies, clear evidences for a
major iron-uptake carrier have not been presented.
Recently, by using a positional cloning strategy to
identify the causative mutation in mice with micro-
cytic anemia and severe defects in intestinal iron
absorption (m k), a strong candidate gene for m k h a s
been identifie d .4 The phenotype is a consequence of
a m i s s e n s e mutation (G185R) in N r a m p 2, a previous-
ly identified gene of unknown function. More recent-
ly, the same G185R mutation found in m k mice has
been identified in N r a m p 2 gene of Belgrade rat, which
has an autosomal recessive microcytic anemia simi-
lar to the m k m o u s e .3 0 Previous studies on the bio-
chemical defect in B e l g r a d e rat had shown an inabili-
ty of transferring iron out of the transferrin cycle
endosome within the erythroid cell.3 0 These data indi-
cate that N r a m p 2 is essential both for normal iron
uptake and for transport of iron in the erytroblast.4 , 3 0

N r a m p 2 is homologous to N r a m p 1, a gene active in
host defense.3 1 The normal function of N r a m p 1 i n
host defense is unknown. The gene is expressed only
in macrophages, is localized to late endocytic com-
partment and could have a role in phagocytic clear-
ance of infecting organisms.4 N r a m p 2 may be a main
protein involved in intestinal iron transport although
its role in HC is still undefined. It now appears clear
that N r a m p or other related proteins might play a cen-
tral role in iron uptake at the intestinal lumen. On the
contrary, the role played by TfR is definitely not as an
iron-carrier at the luminal site. In fact, the absence of
Tf mRNA in duodenal cells and TfR on the brush bor-
der membrane,3 2 , 3 3 and the conflicting data on the
ability of 5 9Fe-transferrin to donate its iron to the
mucosal cells,3 4 , 3 5 argues against a direct role of TfR
in the uptake of iron from the intestinal lumen
(mucosal uptake). However, the preeminent local-
ization of TfR in the basal-lateral membrane region
of crypt and villous cells,3 3 , 3 6 may be strategically
important to facilitate the transport of iron out of
the cell into the circulation (carcass transfer) or, in
reverse, from the bloodstream into the intestinal cell.
Carcass transfer of iron is typically influenced by the
hypoxic stimulus3 7 and, even more, by the increased
erythroid demand.3 8 However, in this case TfR, after
complexing plasma-derived iron-poor Tf should deliv-
er iron-rich Tf back to the plasma. Such a model,
however, does not appear plausible in view of the
present knowledge on TfR receptor cycle. On the oth-
er hand, as allowed by the traditional model of Tf-TfR
cycle, TfR could facilitate the entry of iron into the cell
from plasma by internalyzing plasma-derived iron-
poor Tf. Thus, it is more plausible to postulate that
Tf derived from plasma, although not involved in the
uptake of iron at the luminal membrane, has a role
in transferring iron into the mucosal cell from the
bloodstream. 

The HFE gene product and intestinal iron
absorption

The human HFE protein predicted from the cDNA
sequence is composed of 343 amino acids.3 It is most
homologous to major histocompatibility complex
(MHC) class I molecules that are integral membrane
proteins with three extracellular loops (a1, a2, and
a3), a transmembrane region, and a short cytoplasmic
tail. The C282Y mutation was predicted to disrupt a
critical disulfide bond in the a3 loop of the HFE pro-
tein and to abrogate binding of the mutant HFE pro-
tein to b2M and its transport to and presentation on
the cell surface. These hypotheses correlate well with
the b2M  knock-out mouse studies, where an iron
overload resembling HC has been described.7 - 9 T h u s
the mutation C282Y may be equivalent from a func-
tional point of view to a disrupted b2M. Feder et al.1 6

c o n firmed these predictions by demonstrating the
failure of the C282Y mutant HFE protein to associ-
ate with endogenous b2M in human embryonic kid-



ney cells (293 cells), which were stably transfected
with the mutant cDNA. Yet, a recent study by
Waheed et al.3 9 demonstrated that the wild-type HFE
protein expressed in transfected COS-7 cells associ-
ates with coexpressed b2M and is transported to the
cell surface, but these capabilities are lost by the
C282Y mutant HFE protein. Much of the C282Y
mutant protein remains in high Mr aggregates, as
usually misfolded glycoproteins and MHC class I pro-
tein molecules do, and fails to undergo late Golgi
processing. The delayed delivery of the C282Y mutant
protein from the ER to the middle Golgi is likely to be
the cause of the accelerated degradation of a large
fraction of the newly synthesized C282Y protein.3 9

These authors suggested that the C282Y mutation,
which prevents this association with b2M, results in
a reduction in the amount of mutant protein deliv-
ered from ER to Golgi, and also prevents delivery to
the cell surface because of a block in the transit of the
protein from the middle to trans Golgi compartment.
Unlike the C282Y mutant protein, the H63D mutant
protein associates with b2M. In addition, its synthe-
sis, intracellular transport, oligosaccharide process-
ing, and cell surface expression in COS-7 cells are all
similar to those of wild-type HFE protein. Despite its
apparently normal behavior in all these functional
criteria, genetic evidence1 7 - 1 8 suggests that it can con-
tribute to HC.

The antigen presenting function of the classical
MHC class I molecules is well known, but other roles
have been found for these molecules such as differ-
entiation antigens or hormone receptors.4 0 On the
other hand, a clear definition and functions are still
awaited for the non-classical MHC class I gene such
as HLA-G, HLA-E, HLA-F. There are many hypothe-
ses on their functions, including a signal-transducing
activity, with their ligation leading to the appearance
of a series of second messengers.

One of the best studied example is the neonatal Fc
receptor (FcRn), which in the newborn binds IgGs
from the ingested mother’s milk and transcytoses
them into the bloodstream, where the IgGs are freed
via a pH dependent mechanism.4 1 This family of mol-
ecules have been shown to be very versatile, with the
ability of triggering various biological responses upon
binding antibody-antigen complexes. In conclusion,
the structure of HC-gene product may be very versa-
tile ranging from signal transduction to peptide trans-
porter. The fact that HFE protein does not show iron
binding domains raises the question as to whether
HFE interacts with other iron-proteins or iron-sen-
sors. Interestingly, HFE protein has been recently
localized by immunohistochemistry in the gastroin-
testinal tract, but, surprisingly, it was mainly
expressed in cryptic duodenal cells and absent at
luminal site of villous cells.4 2 The unique localization
of the HFE protein in the crypts of the small intestine
suggests a special role for the HFE protein in these
cells and, at the same time, a special importance of

iron metabolism of cryptic cells in maintenance of
iron homeostasis. In a recent study, human placen-
ta was used with immunohistochemistry to defin e
the site of the HFE protein expression and, by using
i m m u n o a f finity chromatography and immunopre-
cipitation, to identify some of the proteins with which
it is associated.4 3

The study demonstrated that the HFE protein is
expressed on the apical plasma membrane of the syn-
cytiotrophoblasts, where iron is normally transport-
ed to the placenta via transferrin receptor-mediated
endocytosis. It also showed that the HFE protein is
physically associated with the TfR, that plays a cen-
tral role in iron transport across the placenta. Thus,
the novel HFE protein could be one link in regulating
transfer of iron from maternal blood to the fetus.
Seemingly, HFE could associate to TfR at the baso-
lateral membrane and modulate iron availability in
cryptic cells. Iron absorption is a tightly regulated
process and depends on many factors, including the
body’s demand for iron.2 2 Mature epithelial cells of
the mid to upper villus are the site of dietary iron
absorption, while the cells of the intestinal acquire
iron from the circulation through TfR and, only after
cells migrate and become mature enterocytes in the
villus, they absorb iron from the diet. Therefore, it
might be possible that HFE in cryptic cells might
respond to body iron stores and demands and that
a failure in this feedback regulatory loop might cause
a dissociation between iron absorption and body
iron-stores in HC. A faulty primed cryptic cell, once
reaches the tip of the villi, should trigger high iron-
absorption transfer. 

What’s the nature of the signal in mucosal cell for
enhanced iron absorption? A possible signal might be
the iron-content of enterocytes. Under normal con-
ditions, intestinal iron absorption is inversely related
to body-iron stores and, possibly, to mucosal cell-
iron content. Indeed, the concept of a paradoxical iron-
d e fic i e n c y in HC enterocytes was proposed after bio-
chemical and molecular biology studies showed a
reduced accumulation of Ft, up-regulation of TfR
and enhanced IRP activity in intestine of HC
p a t i e n t s .3 2 , 4 4 IRP activation, particularly, responsible
for enhanced TfR expression and decreased ferritin
synthesis, indicated that the duodenal labile iron
pool in HC is reduced as in iron-defic i e n c y .4 4 H o w-
ever, after the original proposal by Hahn and Granick
of the mucosal block where ferritin functioned as a
block for unwanted iron,4 5 , 4 6 other investigators chal-
lenged the role of mucosal ferritin in regulating iron
a b s o r p t i o n ,4 7 , 4 8 and a clear evidence for such a feed-
back mechanism exerted on iron absorption by the
mucosal cell iron status has not been presented yet.

Future perspectives
While we have recently witnessed a dramatic

enhancement of our knowledge on the mechanisms
whereby the C282Y mutation might impair the func-
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tion of the mutant HFE protein, many questions are
still unaswered. How is HFE protein related to the
maintenance of iron homeostasis? How does the
C282Y mutation produce the full HC phenotype?
Has the H63D mutation any biochemical implica-
tion? Has the biochemical link between TfR and HFE
established in placenta a functional implication in
the intestine? If so, through which mechanisms HFE
i n fluences TfR function and intestinal cell iron metab-
olism at the basolateral membrane? It is easy to pre-
dict that in the near future many of these questions
will be answered.

It must also be considered that other genetic dis-
orders causing primary iron overload do exist. A form
of systemic siderosis, reported in Japan, character-
ized by diffuse iron accumulation, neurological
abnormalities and elective storage in the liver and
basal ganglia is caused by ceruloplasmin defic i e n-
c y .4 9 , 5 0 However, genes responsible for other genetic
forms of iron overload are not yet identifed. The
siderosis reported in Central Africa results from the
interaction of an HLA-independent genetic compo-
nent and environmental factors5 1 and the rare juve-
nile form of hemochromatosis, is both unrelated to
HFE and unlinked to the short arm of chromosome
6 .5 2 Also, familial cases of hemochromatosis unre-
lated to HFE and without juvenile expression have
been observed (refs. #53, 54 and unpublished
results). All these non-HFE-related hemochromatosis c o n-
stitute a field of active research for new iron genes.

The existance of distinct genetic diseases causing
iron overload strengthens the idea that a network of
proteins play a role in iron absorption and metabo-
lism. The elucidation of the genetic defects in all these
conditions will certainly contribute to further under-
stand the molecular mechanism of iron metabolism
and to unravel its derangement in HC.

Note added in proofs
It has recently been shown that HFE protein assocaition

with TfR occurs in cultured embryonic kidney cells transfect -
ed with the wild type HFE protein. This association would
decrease the affinity of TfR for Tf. This regulatory function is
absent in C282Y abd reduced in H63D mutant proteins.
These results establish a link between HFE and iron metab -
olism and suggest a causative role for H63D (Feder et al.
Proc Natl Acad Sci USA 1998; 95:1472-7). 

Contributions and Acknowledgments
The two authors equally contributed to this review article.

Funding
This paper was supported in part by E.U. BIOMED con -

tract BMH4-CT96-0994 and Grants E537 and E609 from
the Italian Telethon Foundation. 

Manuscript processing
Manuscript received January 13, 1998; accepted February

26, 1998.

References

1 . Camaschella C, Piperno A. Hereditary hemochro-
matosis: recent advances in molecular genetics and
clinical management. Haematologica 1997; 82:77-8.

2 . Klausner RD, Rouault TA, Harford JB. Regulating the
fate of mRNA: the control of cellular iron metabolism.
Cell 1993; 72:19-28.

3 . Feder JN, Gnirke A, Thomas W, et al. A novel MHC
class I-like gene is mutated in patients with hereditary
haemochromatosis. Nature Genet 1997; 13:399-408.

4. Fleming MD, Trenor CC, Su MA, et al. Microcytic
anaemia mice have mutation in Nramp2, a candidate
iron transporter gene. Nature Genet 1997; 16:383-90.

5 . Gunshin H, Mackenzie B, Berger UV, et al. Cloning
and characterization of a mammalian proton coupled
metal ion transporter. Nature 1997; 388:482-8.

6 . Bodmer JG, Parham P, Albert ED, Marsh SGE. Putting
an hold on ‘HLA-H’. Nature Genet 1997; 15:234-5.

7 . de Sousa M, Reimao R, Lacerda R, Hugo P, Kaufmann
SH, Porto G. Iron overload in beta-2-microglobulin-
d e ficient mice. Immunol Lett 1994; 39:105-11.

8 . Rothenberg BE, Voland JR. b2 knockout mice devel-
op parenchymal iron overload: a putative role for class
I genes of the major histocompatibility complex in iron
metablism. Proc Natl Acad Sci USA 1996; 93:1529-
3 4 .

9 . Santos M, Schilham MW, Rademakers LHP, Marx
JJM, de Sousa M, Clevers H. Defective iron home-
ostasis in b2 microglobulin deficient mice recapitu-
lates hereditary hemochromatosis in man. J Exp Med
1996; 184:1975-85.

1 0 . Jazwinska EC, Mac Cullen L, Busfield F, et al. Haemo-
chromatosis and HLA-H. Nature Genet 1996; 14:249-
5 0 .

1 1 . Jouanolle AM, Gandon G, Jezeque P, et al. Haemo-
chromatosis and HLA-H. Nature Genet 1996; 14:251-
2 .

1 2 . Beutler E, Gelbert T, West C, et al. Mutation analysis
in hereditary hemochromatosis. Blood Cells Molec Dis
1996; 22:187-94.

1 3 . Carella M, D’Ambrosio L, Totaro A, et al. Mutation
analysis of HLA-H gene in Italian hemochromatosis
patients. Am J Hum Genet 1997; 60:828-32.

1 4 . Borot N, Roth MP, Malfroy L, et al. Mutations in the
MHC class I-like candidate gene for hemochromato-
sis in French patients. Immunogenetics 1997; 45:320-
4 .

1 5 . Merryweather-Clarke AT, Pointon JJ, Shearman JD,
Robson KJH. Global prevalence of putative haemo-
chromatosis mutations. J Med Genet 1997; 34:275-8.

1 6 . Feder J, Tsuchihashi Z, Irrinki A, et al. The hemochro-
matosis founder mutation in HLA-H disrupts b2 m i c r o-
globulin interaction and cell surface expression. J Biol
Chem 1997; 272:14025-8.

1 7 . Beutler E. The significance of the 187G (H63D) muta-
tion in hemochromatosis. Am J Hum Genet 1997;
6 1 : 7 6 2 - 4 .

1 8 . Risch N. Haemochromatosis, HFE and genetic com-
plexity. Nature Genet 1997; 17:375-6.

1 9 . Piperno A, Sampietro M, Pietrangelo A, et al. Hetero-
geneity of hemochromatosis in Italy. Gastroenterolo-
gy 1998; in press.

2 0 . Beutler E, West C. New diallelic markers in the HLA
region of chromosome 6. Blood Cells Mol Dis 1997;
2 3 : 2 1 9 - 2 9 .

2 1 . Pointon JJ, Shearman JD, Merryweather-Clarke AT,
Robson KJH. A single nucleotide deletion in the puta-
tive haemochromatosis gene in a patient who is neg-
ative for both the C282Y and H63D mutations

460 A. Pietrangelo et al.



461

[abstract]. International Symposium “Iron in Biology
and Medicine”. Saint Malo, France, June 16-20,
1 9 9 7 : 2 6 8 .

2 2 . Bothwell TH, Charlton RW, Cook JD, Finch CA. Iron
metabolism in man. Oxford, England: Blackwell Sci-
e n t i fic, 1979.

2 3 . Aisen P, Listowsky I. Iron transport and storage pro-
teins. Annu Rev Biochem 1980; 49:357-93.

2 4 . Bleil JD, Bretscher MS. Transferrin receptor and its
recycling in HeLa cells. EMBO J 1982; 1:351-5.

2 5 . Leibold EA, Guo B. Iron-dependent regulation of fer-
ritin and transferrin receptor expression by the iron-
responsive element binding proteins. Annu Rev Nutr
1992; 12:345-68.

2 6 . Hentze MW, Kuhn LC. Molecular control of vertebrate
iron metabolism: mRNA-based regulatory circuits
operated by iron, nitric oxide, and oxidative stress.
Proc Natl Acad Sci USA 1996; 93:8175-82.

2 7 . Cairo G, Pietrangelo A. Transferrin receptor gene
expression during rat liver regeneration. Evidence for
post-transcriptional regulation by iron regulatory fac-
tor B, a second iron-responsive element-binding pro-
tein. J Biol Chem 1994; 269:1-5.

2 8 . Cairo G, Pietrangelo A. Nitric-oxide-mediated activa-
tion of iron-regulatory protein controls hepatic iron
metabolism during acute inflammation. Eur J Biochem
1995; 232:358-63.

2 9 . McCance RA, Widdowson EM. Absorption and excre-
tion of iron. Lancet 1987; 233:680-4.

3 0 . Fleming MA, Romano LM, Garrick LM, Garrick MD,
Andrews NC. Nramp2 is mutated in the anemic Bel-
grade (b) rat: evidence of a role for nramp2 in endo-
somal iron transport. Proc Natl Acad Sci USA 1998;
9 5 : 1 1 4 8 - 5 3 .

3 1 . Vidal S, Malo D, Vogan K, Skamene E, Gros P. Natural
resistance to infection with intracellular parasites: iso-
lation of a candidate for Bcg. Cell 1993; 73:469-85.

3 2 . Pietrangelo A, Rocchi E, Casalgrandi G, et al. Regula-
tion of transferrin, transferrin receptor, and ferritin
genes in human duodenum. Gastroenterology 1992;
1 0 2 : 8 0 2 - 9 .

3 3 . Levine JS, Seligman PA. The ultrastructural immuno-
cytochemical localization of transferrin receptor (TFR)
and transferrin (TF) in the gastrointestinal tract of
man. Gastroenterology 1984; 86:1161.

3 4 . Cox TM, Mazurier J, Spik G, Montreuil J, Peters TJ.
Iron binding proteins and influx of iron across the duo-
denal brush border. Evidence for specific lactotrans-
ferrin receptors in the human small intestine. Biochim
Biophys Acta 1979; 588:120-8.

3 5 . Simpson RJ, Osterloh KRS, Raja KB, Snape S, Peters
TJ. Studies on the role of transferrin and endocytosis
in the uptake of Fe3+ from Fe-nitrilitriacetate by
mouse duodenum. Biochim Biophys Acta 1986; 884:
1 6 6 - 7 1 .

3 6 . Banerjee D, Flanagan PR, Cluett J, Valberg LS. Trans-
ferrin receptors in the human gastrointestinal tract.
Relationship to body iron stores. Gastroenterology
1986; 91:861-9.

3 7 . Hatrorn MKS. The influence of hypoxia on iron
absorption. Gastroenterology 1971; 60:76-81.

3 8 . Mendel GA. Studies on iron absorption. The relation-
ship between the rate of erythropoiesis, hypoxia, and
iron absorption. Blood 1961; 18:727-36.

3 9 . Waheed A, Parkkila S, Yan Zhou X, et al. Hereditary
hemochromatosis: effects of C282Y and H63D muta-

tions on association with b2-microglobulin, intracel-
lular processing, and cell surface expression of the HFE
protein in COS-7 cells. Proc Natl Acad Sci USA 1997;
9 4 : 1 2 3 8 4 - 9 .

4 0 . Bjorkman PJ, Parham P. Structure, function, and
diversity of class I major histocompatibility complex
molecules. Annu Rev Biochem 1990; 59:253-88.

4 1 . Burmeister WP, Huber AH, Bjorkman PJ. Crystal struc-
ture of the complex of rat neonatal Fc receptor with
Fc. Nature 1994; 372:379-83.

4 2 . Parkkila S, Waheed A, Britton RS, et al. Immunohis-
tochemistry of HLA-H, the protein defective in patients
with hereditary hemochromatosis, reveals unique pat-
tern of expression in gastrointestinal tract. Proc Natl
Acad Sci USA 1997; 94:2534-9.

4 3 . Parkkila S, Waheed A, Britton RS, et al. Association of
the transferrin receptor in human placenta with HFE,
the protein defective in hereditary hemochromatosis.
Proc Natl Acad Sci USA 1997; 94:13198-202.

4 4 . Pietrangelo A, Casalgrandi G, Quaglino D, et al. Duo-
denal ferritin synthesis in genetic hemochromatosis.
Gastroenterology 1995; 108:208-17.

4 5 . Hahn PF, Bale WF, Ross JF, Balfour WM, Wipple GH.
Radioactive iron absorption by gastro-intestinal tract:
i n fluence of anemia, anoxia, and antecedent feeding
distribution in growing dogs. J Exp Med 1943; 78:169-
8 8 .

4 6 . Granick S. Ferritin. IX. Increase of the protein apofer-
ritin in the gastrointestinal mucosa as a direct
response to iron feeding. The function of ferritin in the
regulation of iron absorption. J Biol Chem 1946;
1 6 4 : 7 3 7 - 4 6 .

4 7 . Brown EB, Dubach R, Moore CV. Studies on iron
transportation and metabolism. XI. Critical analysis
of mucosal block by large doses of inorganic iron in
human subjects. J Lab Clin Med 1958; 52:335-55.

4 8 . Brittin GM, Raval D. Duodenal ferritin synthesis in
iron-replete and iron deficient rats: response to small
doses of iron. J Lab Clin Med 1971; 77:54-8.

4 9 . Harris ZL, Takahashi Y, Miyahma H, Serizawa M,
MacGillivray RTA, Gitlin JD. Aceruloplasminemia:
molecular characterization of this disorder of iron
metabolism. Proc  Natl Acad Sci USA 1995; 92:2539-
4 3 .

5 0 . Yoshida K, Furihata K, Takeda S, et al. A mutation in
the ceruloplasmin gene is associated with systemic
hemosiderosis in humans. Nature Genet 1995; 9:267-
7 2 .

5 1 . Gordeuk V, Mukiibi J, Hasstedt SJ, et al. Iron overload
in Africa. Interaction between a gene and dietary iron
content. N Engl J Med 1992; 326:95-100.

5 2 . Camaschella C, Roetto A, Cicilano M, et al. Juvenile
and adult haemochromatosis are distinct genetic dis-
orders. Eur J Hum Genet 1997; 5:371-5.

5 3 . Adams PC, Campion ML, Gandon G, LeGall JY, David
V, Jouanolle AM. Clinical and family studies in genet-
ic hemochromatosis: microsatellite and HFE studies in
five atypical families. Hepatology 1997: 26:986-90.

5 4 . Piperno A, Sampietro M, Pietrangelo A, et al. Genet-
ic heterogeneity and genotype/phenotype correlations
in Italian patients with hemochromatosis [abstract].
International Symposium "Iron Biology and Medi-
cine". Saint-Malo, June 16-20, 1997; 254.

5 5 . Totaro A, Roetto A, Rommens J, et al. Generation of
a transcription map of 1 Mbase region containing the
HFE gene (6p22). Eur J Hum Genet 1998, in press.

Molecular genetics and control of iron metabolism in hemochromatosis




