13 research outputs found
Partial hydrolyzed protein as an alternative stabilizer for peanut (Arachis hypogaea) butter
Peanut protein hydrolysates with varying degrees of hydrolysis (DH) were prepared by using Alcalase and Flavourzyme. The enzymatic hydrolysis highly influenced a transformation of protein secondary structures, particularly from β-sheet to β-turn structures (11–21 %). The DH impacted functional properties and anti-free radicals' activity of peanut protein hydrolysates. Flavourzyme-derived protein hydrolysate (FPH) with DH5% had the maximum potential as an emulsifier (54.50 ± 0.71 %, p < 0.05). The effectiveness of protein hydrolysates in preventing the oil separation and enhancing the oxidative stability of peanut butter was dependent on the type of enzyme and DH. The inclusion of partial hydrolyzed protein (DH5%) produced by the Alcalase (APH) substantially decreased the occurrence of oil separation; whereas FPH with DH5% significantly retarded increment of PV, TBARs, CD in peanut butter during the storage period (p < 0.05). This study indicated the possible use of partial hydrolyzed proteins as a stabilizer in peanut butter by slowing lipid oxidation and increasing oil entrapment.fals
Impact of Flour Protein Content and Freezing Conditions on the Quality of Frozen Dough and Corresponding Steamed Bread
Effects of enzymes to improve sensory quality of frozen dough bread and analysis on its mechanism
Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling
Many different raw materials have been proposed for producing nutritious gluten-free breads, but rarely, there is a parallel analysis of the effect of physical treatment on those ingredients. The aim of this study was to incorporate carob flour fractions of varying particle size on rice gluten-free breads prepared with carob/rice (15:85) flour blends. Carob flour particle size was controlled by fractionation or jet milling application. Quality features of gluten-free breads containing carob flour and commercially available gluten-free breads were compared. Carob flour addition led to breads with improved colour parameters, crumb structure, retarded firming and lower moisture loss compared to rice bread. Further improvement in specific volume, crumb hardness, protein and ash content and estimated glycaemic index (eGI) could be obtained by a careful selection of the particle size distribution of the carob flour. Carob breads prepared either with the coarsest or the finest fraction prepared using jet milling led to end products with the highest specific volume (≈2.2 g/cm3) and the lowest crumb hardness (≈5.5 N), although they had lower specific volume and harder crumbs than breads from commercial blends (≈3–4 g/cm3, 0.6–3.8 N). Nevertheless, rice-based bread made with the finest carob flour was superior considering its slower firming, protein content and lower eGI. The incorporation of carob flour obtained by jet milling in rice-based gluten-free breads led to end products with quality characteristics and sensory acceptance resembling commercial breads and high nutritional value.Financial support of the Spanish Ministry of Economy and Competitiveness (Project AGL2014-52928-C2-1-R) and the European Regional Development Fund (FEDER)Peer reviewe
