31,413 research outputs found
Lorentz Violation and Synchrotron Radiation
We consider the radiation emitted by an ultrarelativistic charged particle
moving in a magnetic field, in the presence of an additional Lorentz-violating
interaction. In contrast with prior work, we treat a form of Lorentz violation
that is represented by a renormalizable operator. Neglecting the radiative
reaction force, the particle's trajectory can be determined exactly. The
resulting orbit is generally noncircular and does not lie in the place
perpendicular to the magnetic field. We do not consider any Lorentz violation
in the electromagnetic sector, so the radiation from the accelerated charge can
be determined by standard means, and the radiation spectrum will exhibit a
Lorentz-violating directional dependence. Using data on emission from the Crab
nebula, we can set a bound on a particular combination of Lorentz-violating
coefficients at the level.Comment: 14 page
Generalised photon sieves: fine control of complex fields with simple pinhole arrays
Spatial shaping of light beams has led to numerous new applications in fields such as imaging, optical communication, and micromanipulation. However, structured radiation is less well explored beyond visible optics, where methods for shaping fields are more limited. Binary amplitude filters are often used in these regimes and one such example is a photon sieve consisting of an arrangement of pinholes, the positioning of which can tightly focus incident radiation. Here, we describe a method to design generalized photon sieves: arrays of pinholes that generate arbitrary structured complex fields at their foci. We experimentally demonstrate this approach by the production of Airy and Bessel beams, and Laguerre–Gaussian and Hermite–Gaussian modes. We quantify the beam fidelity and photon sieve efficiency, and also demonstrate control over additional unwanted diffraction orders and the incorporation of aberration correction. The fact that these photon sieves are robust and simple to construct will be useful for the shaping of short- or long-wavelength radiation and eases the fabrication challenges set by more intricately patterned binary amplitude masks
First-principles calculation of DNA looping in tethered particle experiments
We calculate the probability of DNA loop formation mediated by regulatory
proteins such as Lac repressor (LacI), using a mathematical model of DNA
elasticity. Our model is adapted to calculating quantities directly observable
in Tethered Particle Motion (TPM) experiments, and it accounts for all the
entropic forces present in such experiments. Our model has no free parameters;
it characterizes DNA elasticity using information obtained in other kinds of
experiments. [...] We show how to compute both the "looping J factor" (or
equivalently, the looping free energy) for various DNA construct geometries and
LacI concentrations, as well as the detailed probability density function of
bead excursions. We also show how to extract the same quantities from recent
experimental data on tethered particle motion, and then compare to our model's
predictions. [...] Our model successfully reproduces the detailed distributions
of bead excursion, including their surprising three-peak structure, without any
fit parameters and without invoking any alternative conformation of the LacI
tetramer. Indeed, the model qualitatively reproduces the observed dependence of
these distributions on tether length (e.g., phasing) and on LacI concentration
(titration). However, for short DNA loops (around 95 basepairs) the experiments
show more looping than is predicted by the harmonic-elasticity model, echoing
other recent experimental results. Because the experiments we study are done in
vitro, this anomalously high looping cannot be rationalized as resulting from
the presence of DNA-bending proteins or other cellular machinery. We also show
that it is unlikely to be the result of a hypothetical "open" conformation of
the LacI tetramer.Comment: See the supplement at
http://www.physics.upenn.edu/~pcn/Ms/TowlesEtalSuppl.pdf . This revised
version accepted for publication at Physical Biolog
Concentration and Length Dependence of DNA Looping in Transcriptional Regulation
In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least) two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the J-factor for looping
Development of Replacement Heifers using Combinations of Three Forage Types and Feed Supplements (with or without Broiler Litter)
The proper management of replacement heifers is an essential component of successful cow/calf operations. The level of management and nutrition applied to replacement heifers as calves and yearlings can impact their subsequent reproductive performance and productivity
Recommended from our members
Fungal community assembly in soils and roots under plant invasion and nitrogen deposition
Instabilities in Josephson Ladders with Current Induced Magnetic Fields
We report on a theoretical analysis, consisting of both numerical and
analytic work, of the stability of synchronization of a ladder array of
Josephson junctions under the influence of current induced magnetic fields.
Surprisingly, we find that as the ratio of the mutual to self inductance of the
cells of the array is increased a region of unstable behavior occurs followed
by reentrant stable synchronization. Analytic work tells us that in order to
understand fully the cause of the observed instabilities the behavior of the
vertical junctions, sometimes ignored in analytic analyses of ladder arrays,
must be taken into account.Comment: RevTeX, 4 pages, 3 figure
- …