6 research outputs found
Geminin Is Required for Zygotic Gene Expression at the Xenopus Mid-Blastula Transition
In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways
Otx1 and Otx2 in the development and evolution of the mammalian brain.
In the last decade, a number of genes related to the induction, specification and regionalization of the brain were isolated and their functional properties currently are being dissected. Among these, Otx1 and Otx2 play a pivotal role in several processes of brain morphogenesis. Findings from several groups now confirm the importance of Otx2 in the early specification of neuroectoderm destined to become fore-midbrain, the existence of an Otx gene dosage-dependent mechanism in patterning the developing brain, and the involvement of Otx1 in corticogenesis. Some of these properties appear particularly fascinating when considered in evolutionary terms and highlight the central role of Otx genes in the establishment of the genetic program defining the complexity of a vertebrate brain. This review deals with the major aspects related to the roles played by Otx1 and Otx2 in the development and evolution of the mammalian brain