100 research outputs found

    Order Parameters of the Dilute A Models

    Get PDF
    The free energy and local height probabilities of the dilute A models with broken \Integer_2 symmetry are calculated analytically using inversion and corner transfer matrix methods. These models possess four critical branches. The first two branches provide new realisations of the unitary minimal series and the other two branches give a direct product of this series with an Ising model. We identify the integrable perturbations which move the dilute A models away from the critical limit. Generalised order parameters are defined and their critical exponents extracted. The associated conformal weights are found to occur on the diagonal of the relevant Kac table. In an appropriate regime the dilute A3_3 model lies in the universality class of the Ising model in a magnetic field. In this case we obtain the magnetic exponent δ=15\delta=15 directly, without the use of scaling relations.Comment: 53 pages, LaTex, ITFA 93-1

    Finite-Temperature Transition into a Power-Law Spin Phase with an Extensive Zero-Point Entropy

    Full text link
    We introduce an xyxy generalization of the frustrated Ising model on a triangular lattice. The presence of continuous degrees of freedom stabilizes a {\em finite-temperature} spin state with {\em power-law} discrete spin correlations and an extensive zero-point entropy. In this phase, the unquenched degrees of freedom can be described by a fluctuating surface with logarithmic height correlations. Finite-size Monte Carlo simulations have been used to characterize the exponents of the transition and the dynamics of the low-temperature phase

    Random Walks with Long-Range Self-Repulsion on Proper Time

    Full text link
    We introduce a model of self-repelling random walks where the short-range interaction between two elements of the chain decreases as a power of the difference in proper time. Analytic results on the exponent ν\nu are obtained. They are in good agreement with Monte Carlo simulations in two dimensions. A numerical study of the scaling functions and of the efficiency of the algorithm is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included) IFUP-Th 13/92 and SNS 14/9

    Scaling Limit of the Ising Model in a Field

    Get PDF
    The dilute A_3 model is a solvable IRF (interaction round a face) model with three local states and adjacency conditions encoded by the Dynkin diagram of the Lie algebra A_3. It can be regarded as a solvable version of an Ising model at the critical temperature in a magnetic field. One therefore expects the scaling limit to be governed by Zamolodchikov's integrable perturbation of the c=1/2 conformal field theory. Indeed, a recent thermodynamic Bethe Ansatz approach succeeded to unveil the corresponding E_8 structure under certain assumptions on the nature of the Bethe Ansatz solutions. In order to check these conjectures, we perform a detailed numerical investigation of the solutions of the Bethe Ansatz equations for the critical and off-critical model. Scaling functions for the ground-state corrections and for the lowest spectral gaps are obtained, which give very precise numerical results for the lowest mass ratios in the massive scaling limit. While these agree perfectly with the E_8 mass ratios, we observe one state which seems to violate the assumptions underlying the thermodynamic Bethe Ansatz calculation. We also analyze the critical spectrum of the dilute A_3 model, which exhibits massive excitations on top of the massless states of the Ising conformal field theory.Comment: 29 pages, RevTeX, 11 PostScript figures included by epsf, using amssymb.sty (v2.2

    Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions

    Get PDF
    Seagrasses need to withstand hydrodynamic forces; therefore, mechanical properties such as flexibility or breaking resistance are beneficial for survival. The co-variation of leaf breaking properties with biochemical traits in seagrasses has been documented, but it is unknown if the same patterns apply to leaf flexural properties. To interpret changes in the ecological function of seagrass ecosystems based on acclimation responses to environmental changes, it is necessary to understand the factors that affect flexural leaf properties. Here, morphological and flexural leaf properties of the perennial type of Zostera marina across different environmental conditions along European Atlantic climate regions are presented together with C:N ratio and neutral detergent fibre content as descriptors of biochemical leaf composition. Eelgrass leaves from cold regions were similar to threefold more elastic and similar to tenfold more flexible, were also narrower (1.7-fold), and contained similar to 1.9-fold higher fibre content than from plants growing in warmer regions. Eelgrass also showed acclimation to local conditions such as seasonality, water depth, and hydrodynamic exposure. Leaves collected from exposed or shallower locations or during winter were more flexible, suggesting an avoidance strategy to hydrodynamic forcing, which is generally higher under those conditions. Flexural rigidity was almost equally controlled by bending modulus (35%) and leaf thickness (37%), indicating functional differences compared to leaf breaking described in the literature. Overall, the findings indicate that Zostera marina has a high flexural plasticity and high acclimation capacity to some climate change effects such as sea level rise and increase in storm frequency and intensity.German Science FoundationGerman Research Foundation (DFG) [PA 2547/1-1]Royal Swedish Academy of Sciences (KVA travel grant)FCT-Foundation for Science and TechnologyPortuguese Foundation for Science and Technology [UID/Multi/04326/2019, SFRH/BPD/119344/2016

    Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows

    Get PDF
    There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs

    Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Get PDF
    BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons

    The quantum-jump approach to dissipative dynamics in quantum optics

    Get PDF
    Published versio
    corecore