17 research outputs found

    Calculation of the Free Energy and Cooperativity of Protein Folding

    Get PDF
    Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature, concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation, and drug design

    Mechanisms of Intramolecular Communication in a Hyperthermophilic Acylaminoacyl Peptidase: A Molecular Dynamics Investigation

    Get PDF
    Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface

    Molecular Dynamics of Mesophilic-Like Mutants of a Cold-Adapted Enzyme: Insights into Distal Effects Induced by the Mutations

    Get PDF
    Networks and clusters of intramolecular interactions, as well as their “communication” across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme

    Free energies of transfer of Trp analogs from chloroform to water: Comparison of theory and experiment and the importance of adequate treatment of electrostatic and internal interactions

    No full text
    Experimentally determined water/chloroform partition coefficients for three indole derivatives (3-methylindole, N-acetyltryptamine, and 3-(3'-indolyl)propionic acid N-methylamide), models of the amino acid tryptophan, are compared to free-energy differences calculated using molecular dynamics simulations. The effect of the choice of force field, the choice of pathway along which the free-energy change is calculated, the inclusion of free-energy contributions from constraints, and the treatment of long-range interactions on the agreement with the experimental data for this system are investigated with an eye to understanding the importance of the different aspects of the molecular model and computational procedure. It is demonstrated that, although the compounds are neutral and do not differ much in dipole moment or charge distribution, the incorporation of a reaction field to treat long-range electrostatic interactions is necessary to reproduce the experimentally observed trends. The implications of these findings for free-energy calculations in general and for the estimation of partition coefficients in particular are discussed

    Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates

    No full text
    Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model should reproduce the thermodynamic and structural properties of the corresponding AL model after mapping to the lower-resolution scale. In the present work, two such models are investigated: (i) the classical GROMOS atomic-level model; (ii) a CG model recently proposed by Marrink et al., which maps approximately four non-hydrogen atoms to one bead [J. Phys. Chem. B 2004, 108, 750]. The study is restricted to n-alkanes whose aliphatic fragments are abundantly found in lipids of biological interest. Additionally, cis-9-octadecene is included, as a template chain of the lipid dioleoylphosphatidylcholine (DOPC). The two representations of molecules in the liquid phase are compared in terms of average molecular structures, extent of configurational space sampled, and single-molecule entropies. An approximate method is used to estimate the rotational contributions to the absolute configurational entropy. Good correspondence between the AL and CG representations is found. The loss in configurational entropy due to the reduction in degrees of freedom upon coarse-graining of the model is estimated
    corecore