66 research outputs found

    Suppression of Mott–Hubbard states and metal–insulator transitions in the two-band Hubbard model

    Get PDF
    I investigate band and Mott insulating states in a two-band Hubbard model, with the aim of understanding the differences between the idealized one-orbital model and the more realistic multi-band case. Using a projection ansatz I show that additional orbitals suppress the metal–insulator transition, leading to a critical coupling of approximately eight times the bare bandwidth. I also demonstrate the effects of orbital ordering, which hinder Mott–Hubbard states and open a bandgap. Since multi-band correlations are common in real materials, this work suggests that very strongly correlated band insulators may be more common than Mott–Hubbard insulators

    Platelet Function in Acute Experimental Pancreatitis

    Get PDF
    Acute pancreatitis (AP) is characterized by disturbances of pancreatic microcirculation. It remains unclear whether platelets contribute to these perfusion disturbances. The aim of our study was to investigate platelet activation and function in experimental AP. Acute pancreatitis was induced in rats: (1) control (n = 18; Ringer’s solution), (2) mild AP (n = 18; cerulein), and (3) severe AP (n = 18; glycodeoxycholic acid (GDOC) + cerulein). After 12 h, intravital microscopy was performed. Rhodamine-stained platelets were used to investigate velocity and endothelial adhesion in capillaries and venules. In addition, erythrocyte velocity and leukocyte adhesion were evaluated. Serum amylase, thromboxane A2, and histology were evaluated after 24 h in additional animals of each group. Results showed that 24 h after cerulein application, histology exhibited a mild AP, whereas GDOC induced severe necrotizing AP. Intravital microscopy showed significantly more platelet–endothelium interaction, reduced erythrocyte velocity, and increased leukocyte adherence in animals with AP compared to control animals. Thromboxane levels were significantly elevated in all AP animals and correlated with the extent of platelet activation and severity of AP. In conclusion, platelet activation plays an important role in acute, especially necrotizing, pancreatitis. Mainly temporary platelet–endothelium interaction is observed during mild AP, whereas severe AP is characterized by firm adhesion with consecutive coagulatory activation and perfusion failure

    The Influence of cis-Regulatory Elements on DNA Methylation Fidelity

    Get PDF
    It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs
    corecore