35 research outputs found
Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure
Using a first-principles approach based on density-functional theory, we find
that a large tetragonal strain can be induced in PbTiO3 by application of a
negative hydrostatic pressure. The structural parameters and the dielectric and
dynamical properties are found to change abruptly near a crossover pressure,
displaying a ``kinky'' behavior suggestive of proximity to a phase transition.
Analogous calculations for BaTiO3 show that the same effect is also present
there, but at much higher negative pressure. We investigate this unexpected
behavior of PbTiO3 and discuss an interpretation involving a phenomenological
description in terms of a reduced set of relevant degrees of freedom.Comment: 9 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/st_pbti/index.htm
Self-consistent equation for an interacting Bose gas
We consider interacting Bose gas in thermal equilibrium assuming a positive
and bounded pair potential such that 0<\int d\br V(r) = a<\infty.
Expressing the partition function by the Feynman-Kac functional integral yields
a classical-like polymer representation of the quantum gas. With Mayer graph
summation techniques, we demonstrate the existence of a self-consistent
relation between the density and the
chemical potential , valid in the range of convergence of Mayer series.
The function is equal to the sum of all rooted multiply connected graphs.
Using Kac's scaling V_{\gamma}(\br)=\gamma^{3}V(\gamma r) we prove that in
the mean-field limit only tree diagrams contribute and function
reduces to the free gas density.
We also investigate how to extend the validity of the self-consistent
relation beyond the convergence radius of Mayer series (vicinity of
Bose-Einstein condensation) and study dominant corrections to mean field. At
lowest order, the form of function is shown to depend on single polymer
partition function for which we derive lower and upper bounds and on the
resummation of ring diagrams which can be analytically performed.Comment: 33 pages, 6 figures, submitted to Phys.Rev.
Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles
Ab initio phonon calculations for the nonpolar reference structures of the
(001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The
unstable polar modes in the tetragonal (001) and (110) structures are confined
in either the Ti- or the Zr-centered layers and display two-mode behavior,
while in the cubic (111) case one-mode behavior is observed. Instabilities with
pure oxygen character are observed in all three structures. The implications
for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR
Ab initio study of ferroelectric domain walls in PbTiO3
We have investigated the atomistic structure of the 180-degree and 90-degree
domain boundaries in the ferroelectric perovskite compound PbTiO3 using a
first-principles ultrasoft-pseudopotential approach. For each case we have
computed the position, thickness and creation energy of the domain walls, and
an estimate of the barrier height for their motion has been obtained. We find
both kinds of domain walls to be very narrow with a similar width of the order
of one to two lattice constants. The energy of the 90-dergree domain wall is
calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its
180-degree counterpart, and only a miniscule barrier for its motion is found.
As a surprising feature we detected a small offset of 0.15-0.2 eV in the
electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm
Theory of structural response to macroscopic electric fields in ferroelectric systems
We have developed and implemented a formalism for computing the structural
response of a periodic insulating system to a homogeneous static electric field
within density-functional perturbation theory (DFPT). We consider the
thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with
respect to the internal structural parameters R and unit cell strain eta yields
the equilibrium structure at fixed electric field e and polarization P,
respectively. First-order expansion of E(R,eta,e) in e leads to a useful
approximation in which R(P) and eta(P) can be obtained by simply minimizing the
zero-field internal energy with respect to structural coordinates subject to
the constraint of a fixed spontaneous polarization P. To facilitate this
minimization, we formulate a modified DFPT scheme such that the computed
derivatives of the polarization are consistent with the discretized form of the
Berry-phase expression. We then describe the application of this approach to
several problems associated with bulk and short-period superlattice structures
of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects
of compositionally broken inversion symmetry, the equilibrium structure for
high values of polarization, field-induced structural phase transitions, and
the lattice contributions to the linear and the non-linear dielectric
constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm
Structural and dielectric properties of SrTiO from first principles
We have investigated the structural and dielectric properties of
SrTiO,the first member of the SrTiO
Ruddlesden-Popper series, within density functional theory. Motivated by recent
work in which thin films of SrTiO were grown by molecular beam
epitaxy (MBE) on SrTiO substrates, the in-plane lattice parameter was
fixed to the theoretically optimized lattice constant of cubic SrTiO
(n=), while the out-of-plane lattice parameter and the internal
structural parameters were relaxed. The fully relaxed structure was also
investigated. Density functional perturbation theory was used to calculate the
zone-center phonon frequencies, Born effective charges, and the electronic
dielectric permittivity tensor. A detailed study of the contribution of
individual infrared-active modes to the static dielectric permittivity tensor
was performed. The calculated Raman and infrared phonon frequencies were found
to be in agreement with experiment where available. Comparisons of the
calculated static dielectric permittivity with experiments on both ceramic
powders and epitaxial thin films are discussed.Comment: 11 pages, 1 figure, 8 tables, submitted to Phys. Rev.
Electronic and structural properties of vacancies on and below the GaP(110) surface
We have performed total-energy density-functional calculations using
first-principles pseudopotentials to determine the atomic and electronic
structure of neutral surface and subsurface vacancies at the GaP(110) surface.
The cation as well as the anion surface vacancy show a pronounced inward
relaxation of the three nearest neighbor atoms towards the vacancy while the
surface point-group symmetry is maintained. For both types of vacancies we find
a singly occupied level at mid gap. Subsurface vacancies below the second layer
display essentially the same properties as bulk defects. Our results for
vacancies in the second layer show features not observed for either surface or
bulk vacancies: Large relaxations occur and both defects are unstable against
the formation of antisite vacancy complexes. Simulating scanning tunneling
microscope pictures of the different vacancies we find excellent agreement with
experimental data for the surface vacancies and predict the signatures of
subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
The physics of dynamical atomic charges: the case of ABO3 compounds
Based on recent first-principles computations in perovskite compounds,
especially BaTiO3, we examine the significance of the Born effective charge
concept and contrast it with other atomic charge definitions, either static
(Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static
and dynamical charges are not driven by the same underlying parameters. A
unified treatment of dynamical charges in periodic solids and large clusters is
proposed. The origin of the difference between static and dynamical charges is
discussed in terms of local polarizability and delocalized transfers of charge:
local models succeed in reproducing anomalous effective charges thanks to large
atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor
the physical picture based upon transfer of charges. Various results concerning
barium and strontium titanates are presented. The origin of anomalous Born
effective charges is discussed thanks to a band-by-band decomposition which
allows to identify the displacement of the Wannier center of separated bands
induced by an atomic displacement. The sensitivity of the Born effective
charges to microscopic and macroscopic strains is examined. Finally, we
estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe
Phonons and related properties of extended systems from density-functional perturbation theory
This article reviews the current status of lattice-dynamical calculations in
crystals, using density-functional perturbation theory, with emphasis on the
plane-wave pseudo-potential method. Several specialized topics are treated,
including the implementation for metals, the calculation of the response to
macroscopic electric fields and their relevance to long wave-length vibrations
in polar materials, the response to strain deformations, and higher-order
responses. The success of this methodology is demonstrated with a number of
applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
First-principles study of the effect of charge on the stability of a diamond nanocluster surface
Effects of net charge on the stability of the diamond nanocluster are investigated using the first-principles pseudopotential method with the local density approximation. We find that the charged nanocluster favors the diamond phase over the reconstruction into a fullerene-like structure. Occupying the dangling bond orbitals in the outermost surface, the excess charge can stabilize the bare diamond surface and destabilize the C-H bond on the hydrogenated surface. In combination with recent experimental results, our calculations suggest that negative charging could promote the nucleation and further growth of low-pressure diamond.open8