32 research outputs found

    Pollen, biomarker and stable isotope evidence of late Quaternary environmental change at Lake McKenzie, southeast Queensland

    Get PDF
    Unravelling links between climate change and vegetation response during the Quaternary is important if the climate–environment interactions of modern systems are to be fully understood. Using a sediment core from Lake McKenzie, Fraser Island, we reconstruct changes in the lake ecosystem and surrounding vegetation over the last ca. 36.9 cal kyr. Evidence is drawn from multiple sources, including pollen, micro-charcoal, biomarker and stable isotope (C and N) analyses, and is used to gain a better understanding of the nature and timing of past ecological changes that have occurred at the site. The glacial period of the record, from ca. 36.9 to 18.3 cal kyr BP, is characterised by an increased abundance of plants of the aquatic and littoral zone, indicating lower lake water levels. High abundance of biomarkers and microfossils of the colonial green alga Botryococcus occurred at this time and included large variation in individual botryococcene d13C values. A slowing or ceasing of sediment accumulation occurred during the time period from ca. 18.3 to 14.0 cal kyr BP. By around 14.0 cal kyr BP fire activity in the area was reduced, as was abundance of littoral plants and terrestrial herbs, suggesting wetter conditions from that time. The Lake McKenzie pollen record conforms to existing records from Fraser Island by containing evidence of a period of reduced effective precipitation that commenced in the mid-Holocene

    Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media

    Get PDF
    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield60 mg/mLwas achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.The authors would like to acknowledge the Brazil National Council of Technological and Scientific Development (CNPq, FAPESP, and CAPES), the financial support from FAPESP 2009/14897-7, and Fundacao para a Ciencia e a Tecnologia (FCT)/Portugal through the project PTDC/EBB-EBI/112170/2009 for the financial support and scholarship. Special thanks to Talita Almeida Vicentin for technical support

    Smoking, alcohol consumption, physical activity, and family history and the risks of acute myocardial infarction and unstable angina pectoris: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few studies investigated the association between smoking, alcohol consumption, or physical activity and the risk of unstable angina pectoris (UAP), while the strength of these associations may differ compared to other coronary diseases such as acute myocardial infarction (AMI). Therefore, we investigated whether the associations of these lifestyle factors with UAP differed from those with AMI. Additionally, we investigated whether these effects differed between subjects with and without a family history of myocardial infarction (MI).</p> <p>Methods</p> <p>The CAREMA study consists of 21,148 persons, aged 20-59 years at baseline and randomly sampled from the Maastricht region in 1987-1997. At baseline, all participants completed a self-administered questionnaire. After follow-up of maximally 16.9 years, 420 AMI and 274 UAP incident cases were registered. Incidence rate ratios (RRs) were estimated using Cox proportional hazards models.</p> <p>Results</p> <p>For both diseases, smoking increased the risk while alcohol consumption was associated with a protective effect. Associations with both risk factors were stronger for AMI than UAP, although this difference was only statistically significant for smoking. In men, an inverse association was found with physical activity during leisure time which seemed to be stronger for the risk of UAP than of AMI. On the contrary, physical activity during leisure time was associated with an increased risk of both AMI and UAP in women which seemed to be weaker for UAP than for AMI. Except for occupational physical activity in women, no significant interactions on a multiplicative scale were found between the lifestyle factors and family history of MI. Nevertheless, the highest risks were found in subjects with both a positive family history and the most unfavorable level of the lifestyle factors.</p> <p>Conclusions</p> <p>The strength of the associations with the lifestyle factors did not differ between AMI and UAP, except for smoking. Furthermore, the effects of the lifestyle factors on the risk of both coronary diseases were similar for subjects with and without a positive family history.</p

    The ubiquitin proteasome system in neuropathology

    Get PDF
    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed

    The neglectable impact of delayed graft function on long-term graft survival in kidneys donated after circulatory death associates with superior organ resilience

    No full text
    OBJECTIVE:To explore putative different impacts of delayed graft function (DGF) on long-term graft survival in kidneys donated after brain death (DBD) and circulatory death (DCD). BACKGROUND:Despite a 3-fold higher incidence of DGF in DCD grafts, large studies show equivalent long-term graft survival for DBD and DCD grafts. This observation implies a differential impact of DGF on DBD and DCD graft survival. The contrasting impact is remarkable and yet unexplained. METHODS:The impact of DGF on DBD and DCD graft survival was evaluated in 6635 kidney transplants performed in The Netherlands. DGF severity and functional recovery dynamics were assessed for 599 kidney transplants performed at the Leiden Transplant Center. Immunohistochemical staining, gene expression profiling, and Ingenuity Pathway Analysis were used to identify differentially activated pathways in DBD and DCD grafts. RESULTS:While DGF severely impacted 10-year graft survival in DBD grafts (HR 1.67; P &lt; 0.001), DGF did not impact graft survival in DCD grafts (HR 1.08; P = 0.63). Shorter dialysis periods and superior posttransplant eGFRs in DBD grafts show that the differential impact was not caused by a more severe DGF phenotype in DBD grafts. Immunohistochemical evaluation indicates that pathways associated with tissue resilience are present in kidney grafts. Molecular evaluation showed selective activation of resilience-associated pathways in DCD grafts. CONCLUSIONS:This study shows an absent impact of DGF on long-term graft survival in DCD kidneys. Molecular evaluation suggests that the differential impact of DGF between DBD and DCD grafts relates to donor-type specific activation of resilience pathways in DCD grafts
    corecore