507 research outputs found
Optical one-way quantum computing with a simulated valence-bond solid
One-way quantum computation proceeds by sequentially measuring individual
spins (qubits) in an entangled many-spin resource state. It remains a
challenge, however, to efficiently produce such resource states. Is it possible
to reduce the task of generating these states to simply cooling a quantum
many-body system to its ground state? Cluster states, the canonical resource
for one-way quantum computing, do not naturally occur as ground states of
physical systems. This led to a significant effort to identify alternative
resource states that appear as ground states in spin lattices. An appealing
candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb,
and Tasaki (AKLT). It is the unique, gapped ground state for a two-body
Hamiltonian on a spin-1 chain, and can be used as a resource for one-way
quantum computing. Here, we experimentally generate a photonic AKLT state and
use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc
Panbacterial real-time PCR to evaluate bacterial burden in chronic wounds treated with Cutimed™ Sorbact™
The impact of polymicrobial bacterial infection on chronic wounds has been studied extensively, but standard bacteriological analysis is not always sensitive enough. Molecular approaches represent a promising alternative to the standard bacteriological analysis. This work aimed to assess the usefulness of a panbacterial quantitative real-time PCR reaction to quantitate the total bacterial load in chronic wounds treated with Cutimed™ Sorbact™, a novel therapeutic approach based on hydrophobic binding of bacteria to a membrane. The results obtained by panbacterial real-time PCR on conserved sequences of the bacterial 16S gene show that the bacterial burden significantly decreased in 10 out of 15 healing chronic wounds, and did not change in 5 out of 5 non-healing chronic wounds. On the contrary, classical culture for S. aureus and P. aeruginosa, and real-time PCR for Bacteroides and Fusobacterium did not show any correlation with the clinical outcome. Our study also shows that quantification of chronic wounds by panbacterial real-time PCR is to be performed on biopsies and not on swabs. These results show that panbacterial real-time PCR is a promising and quick method of determining the total bacterial load in chronic wounds, and suggest that it might be an important biomarker for the prognosis of chronic wounds under treatment
Community Analysis of Chronic Wound Bacteria Using 16S rRNA Gene-Based Pyrosequencing: Impact of Diabetes and Antibiotics on Chronic Wound Microbiota
Background: Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota. Methodology/Principal Findings: We prospectively enrolled 24 patients at a referral wound center in Baltimore, MD; sampled patients' wounds by curette; cultured samples under aerobic and anaerobic conditions; and pyrosequenced the 16S rRNA V3 hypervariable region. The 16S rRNA gene-based analyses revealed an average of 10 different bacterial families in wounds-approximately 4 times more than estimated by culture-based analyses. Fastidious anaerobic bacteria belonging to the Clostridiales family XI were among the most prevalent bacteria identified exclusively by 16S rRNA gene-based analyses. Community-scale analyses showed that wound microbiota from antibiotic treated patients were significantly different from untreated patients (p = 0.007) and were characterized by increased Pseudomonadaceae abundance. These analyses also revealed that antibiotic use was associated with decreased Streptococcaceae among diabetics and that Streptococcaceae was more abundant among diabetics as compared to non-diabetics. Conclusions/Significance: The 16S rRNA gene-based analyses revealed complex bacterial communities including anaerobic bacteria that may play causative roles in the non-healing state of some chronic wounds. Our data suggest that antimicrobial therapy alters community structure-reducing some bacteria while selecting for others
Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. spp. and against difficult to culture bacteria such as anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to high-resolution molecular diagnostic methods such as bTEFAP
A review of African horse sickness and its implications for Ireland
African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst ‘very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (‘medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus
The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets
<p>Abstract</p> <p>Background</p> <p>Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS) makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis.</p> <p>Description</p> <p>Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP) server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.). Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP) their own data to the server for online processing via a novel raw data processing pipeline.</p> <p>Conclusions</p> <p>MetabolomeExpress <url>https://www.metabolome-express.org</url> provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to assess data quality and draw their own insights from published metabolomics datasets.</p
Experimental investigation of the entanglement-assisted entropic uncertainty principle
The uncertainty principle, which bounds the uncertainties involved in
obtaining precise outcomes for two complementary variables defining a quantum
particle, is a crucial aspect in quantum mechanics. Recently, the uncertainty
principle in terms of entropy has been extended to the case involving quantum
entanglement. With previously obtained quantum information for the particle of
interest, the outcomes of both non-commuting observables can be predicted
precisely, which greatly generalises the uncertainty relation. Here, we
experimentally investigated the entanglement-assisted entropic uncertainty
principle for an entirely optical setup. The uncertainty is shown to be near
zero in the presence of quasi-maximal entanglement. The new uncertainty
relation is further used to witness entanglement. The verified entropic
uncertainty relation provides an intriguing perspective in that it implies the
uncertainty principle is not only observable-dependent but is also
observer-dependent.Comment: 14 pages, 5 figure
A multi-center population-based case–control study of ovarian cancer in African-American women: the African American Cancer Epidemiology Study (AACES)
Abstract: Background: Ovarian cancer (OVCA) is the leading cause of death from gynecological cancer, with poorer survival for African American (AA) women compared to whites. However, little is known about risk factors for OVCA in AA. To study the epidemiology of OVCA in this population, we started a collaborative effort in 10 sites in the US. Here we describe the study and highlight the challenges of conducting a study of a lethal disease in a minority population. Methods: The African American Cancer Epidemiology Study (AACES) is an ongoing, population-based case–control study of OVCA in AA in 10 geographic locations, aiming to recruit 850 women with invasive epithelial OVCA and 850 controls age- and geographically-matched to cases. Rapid case ascertainment and random-digit-dialing systems are in place to ascertain cases and controls, respectively. A telephone survey focuses on risk factors as well as factors of particular relevance for AAs. Food-frequency questionnaires, follow-up surveys, biospecimens and medical records are also obtained. Results: Current accrual of 403 AA OVCA cases and 639 controls exceeds that of any existing study to date. We observed a high proportion (15%) of deceased non-responders among the cases that in part is explained by advanced stage at diagnosis. A logistic regression model did not support that socio-economic status was a factor in advanced stage at diagnosis. Most risk factor associations were in the expected direction and magnitude. High BMI was associated with ovarian cancer risk, with multivariable adjusted ORs and 95% CIs of 1.50 (0.99-2.27) for obese and 1.27 (0.85- 1.91) for morbidly obese women compared to normal/underweight women. Conclusions: AACES targets a rare tumor in AAs and addresses issues most relevant to this population. The importance of the study is accentuated by the high proportion of OVCA cases ascertained as deceased. Our analyses indicated that obesity, highly prevalent in this population (>60% of the cases), was associated with increased OVCA risk. While these findings need to be replicated, they suggest the potential for an effective intervention on the risk in AAs. Upon completion of enrollment, AACES will be the largest epidemiologic study of OVCA in AA women
Karyotype and genome size of Iberochondrostoma almacai (Teleostei, Cyprinidae) and comparison with the sister-species I.lusitanicum
This study aimed to define the karyotype of the recently described Iberian endemic Iberochondrostoma almacai, to revisit the previously documented chromosome polymorphisms of its sister species I.lusitanicum using C-, Ag-/CMA3 and RE-banding, and to compare the two species genome sizes. A 2n = 50 karyotype (with the exception of a triploid I.lusitanicum specimen) and a corresponding haploid chromosome formula of 7M:15SM:3A (FN = 94) were found. Multiple NORs were observed in both species (in two submetacentric chromosome pairs, one of them clearly homologous) and a higher intra and interpopulational variability was evidenced in I.lusitanicum. Flow cytometry measurements of nuclear DNA content showed some significant differences in genome size both between and within species: the genome of I. almacai was smaller than that of I.lusitanicum (mean values 2.61 and 2.93 pg, respectively), which presented a clear interpopulational variability (mean values ranging from 2.72 to 3.00 pg). These data allowed the distinction of both taxa and confirmed the existence of two well differentiated groups within I. lusitanicum: one that includes the populations from the right bank of the Tejo and Samarra drainages, and another that reunites the southern populations. The peculiar differences between the two species, presently listed as “Critically Endangered”, reinforced the importance of this study for future conservation plans
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- …