25 research outputs found

    Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome

    Get PDF
    Survivin is an apoptotic inhibitor that is expressed at high levels in a variety of malignancies. Survivin has four known alternative splice forms (Survivin, Survivin-2B, Survivin-deltaEx3, and Survivin-3B), and the recent literature suggests that these splice variants have unique functions and subcellular localisation patterns. We evaluated 19 fresh-frozen paediatric medulloblastomas for the expression of three Survivin isoforms by quantitative PCR. Survivin was most highly expressed when compared with normal cerebellar tissue. We also investigated Survivin protein expression in 40 paraffin-embedded paediatric medulloblastoma tumours by immunohistochemistry. We found a statistically significant association between the percentage of Survivin-positive cells and histologic subtype, with the large-cell-anaplastic variant expressing Survivin at higher levels than the classic subtype. We also found a statistically significant relationship between the percent of Survivin-positive cells in the tumours and clinical outcome, with higher levels of Survivin correlating with a worse prognosis. In summary, our study demonstrates a role for Survivin as a marker of tumour morphology and clinical outcome in medulloblastoma. Survivin may be a promising future prognostic tool and potential biologic target in this malignancy

    Losing half the conductive area hardly impacts the water status of mature trees

    No full text
    Abstract The water status of transpiring tree crowns depends on a hydraulic continuum from the soil matrix around roots to the sub-stomatal cavity of leaves, with a multitude of hydraulic resistances along this path. Although the stem xylem path may not be the most critical of these resistances, it had been suggested that a >50% interruption of that path by drought-stress-induced embolization (air filling) of conduits is critical for tree survival. Here we show that cutting the sapwood of mature, 35 m tall trees in half hardly affects crown water status and transpiration. Counter expectation, this first adult tree sapwood interception experiment revealed that shoot water potential in the canopy (assessed by using a 45 m canopy crane) either remained unaffected (spruce) or became less negative (beech), associated with small reductions in leaf diffusive conductance for water vapour. We conclude that the stem xylem of these trees has a large overcapacity and the tree hydraulics debate requires a critical re-visitation
    corecore