23 research outputs found

    A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain

    Get PDF
    Low back pain (LBP) is a common and disabling disorder in western society. The management of LBP comprises a range of different intervention strategies including surgery, drug therapy, and non-medical interventions. The objective of the present study is to determine the effectiveness of physical and rehabilitation interventions (i.e. exercise therapy, back school, transcutaneous electrical nerve stimulation (TENS), low level laser therapy, education, massage, behavioural treatment, traction, multidisciplinary treatment, lumbar supports, and heat/cold therapy) for chronic LBP. The primary search was conducted in MEDLINE, EMBASE, CINAHL, CENTRAL, and PEDro up to 22 December 2008. Existing Cochrane reviews for the individual interventions were screened for studies fulfilling the inclusion criteria. The search strategy outlined by the Cochrane Back Review Groups (CBRG) was followed. The following were included for selection criteria: (1) randomized controlled trials, (2) adult (≥18 years) population with chronic (≥12 weeks) non-specific LBP, and (3) evaluation of at least one of the main clinically relevant outcome measures (pain, functional status, perceived recovery, or return to work). Two reviewers independently selected studies and extracted data on study characteristics, risk of bias, and outcomes at short, intermediate, and long-term follow-up. The GRADE approach was used to determine the quality of evidence. In total 83 randomized controlled trials met the inclusion criteria: exercise therapy (n = 37), back school (n = 5), TENS (n = 6), low level laser therapy (n = 3), behavioural treatment (n = 21), patient education (n = 1), traction (n = 1), and multidisciplinary treatment (n = 6). Compared to usual care, exercise therapy improved post-treatment pain intensity and disability, and long-term function. Behavioural treatment was found to be effective in reducing pain intensity at short-term follow-up compared to no treatment/waiting list controls. Finally, multidisciplinary treatment was found to reduce pain intensity and disability at short-term follow-up compared to no treatment/waiting list controls. Overall, the level of evidence was low. Evidence from randomized controlled trials demonstrates that there is low quality evidence for the effectiveness of exercise therapy compared to usual care, there is low evidence for the effectiveness of behavioural therapy compared to no treatment and there is moderate evidence for the effectiveness of a multidisciplinary treatment compared to no treatment and other active treatments at reducing pain at short-term in the treatment of chronic low back pain. Based on the heterogeneity of the populations, interventions, and comparison groups, we conclude that there are insufficient data to draw firm conclusion on the clinical effect of back schools, low-level laser therapy, patient education, massage, traction, superficial heat/cold, and lumbar supports for chronic LBP

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    Photonic polymers for the devices of the 21<sup>st</sup> century

    No full text
    This paper describes research activities towards the development of polymer materials and devices for optoelectronics. Electroluminescent devices, lasers and photovoltaic devices from polymers or oligomers are discussed

    The plastic deformation of ultra-high molecular weight polyethylene

    Get PDF
    Gel-spun filaments of different initial morphologies have been subjected to controlled drawing at elevated temperatures. The drawn samples have been examined by high-resolution scanning electron microscopy. The deformation mechanism at temperatures up to 120° C is very similar to crazing, especially in the case of unoriented gel-spun filaments. Filaments exhibiting a shish-kebab morphology offer the opportunity of examining the deformation of elementary fibrils in a quantitative way. The transformation of individual lamellae into fibrils is the initial deformation mode, which is followed by slip of fibrils at a later stage. This is concluded from a comparison of experimental data and model calculations of the maximum draw ratio. Drawing at 144° C results in the formation of globular aggregates of lamellae, with a characteristic long period of 40 nm. This long period persists until all the globules have been converted, by micronecking, into aggregate fibrils of extended-chain character. On a molecular scale, the various processes can be described as the temperature-dependent flow behaviour of an entanglement network

    Stimulated emission from films of conjugated polymers and oligomers

    No full text
    Oligomers and block copolymers structurally related to PPV were investigated under intense optical excitation. Their well-defined molecular structure allows a better control of emission properties than is usually feasible in semiconducting polymers. Stimulated emission is demonstrated in single crystals of PPV-type oligomers, and also in thin films obtained by spincasting of copolymers containing PPV-type blocks. Waveguiding is shown to provide the length of interaction required for mirrorless laser generation. Thin films of oligomers obtained through deposition from the vapor phase are polycrystalline, and the optical losses in the as-deposited films are too large for lasing to be achieved. These films show stimulated emission only after the domain size has been increased by annealing. Lasing occurs within individual crystalline domains with a threshold value comparable to that found for optically clear amorphous films of conjugated polymers

    Stimulated emission from films of conjugated polymers and oligomers

    No full text
    Oligomers and block copolymers structurally related to PPV were investigated under intense optical excitation. Their well-defined molecular structure allows a better control of emission properties than is usually feasible in semiconducting polymers. Stimulated emission is demonstrated in single crystals of PPV-type oligomers, and also in thin films obtained by spincasting of copolymers containing PPV-type blocks. Waveguiding is shown to provide the length of interaction required for mirrorless laser generation. Thin films of oligomers obtained through deposition from the vapor phase are polycrystalline, and the optical losses in the as-deposited films are too large for lasing to be achieved. These films show stimulated emission only after the domain size has been increased by annealing. Lasing occurs within individual crystalline domains with a threshold value comparable to that found for optically clear amorphous films of conjugated polymers
    corecore