12 research outputs found

    Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabis therapy has been considered an effective treatment for spasticity, although clinical reports of symptom reduction in multiple sclerosis (MS) describe mixed outcomes. Recently introduced therapies of combined Δ<sup>9</sup>-tetrahydrocannabinol (THC) and cannabidiol (CBD) extracts have potential for symptom relief with the possibility of reducing intoxication and other side effects. Although several past reviews have suggested that cannabinoid therapy provides a therapeutic benefit for symptoms of MS, none have presented a methodical investigation of newer cannabinoid treatments in MS-related spasticity. The purpose of the present review was to systematically evaluate the effectiveness of combined THC and CBD extracts on MS-related spasticity in order to increase understanding of the treatment's potential effectiveness, safety and limitations.</p> <p>Methods</p> <p>We reviewed MEDLINE/PubMed, Ovid, and CENTRAL electronic databases for relevant studies using randomized controlled trials. Studies were included only if a combination of THC and CBD extracts was used, and if pre- and post-treatment assessments of spasticity were reported.</p> <p>Results</p> <p>Six studies were systematically reviewed for treatment dosage and duration, objective and subjective measures of spasticity, and reports of adverse events. Although there was variation in the outcome measures reported in these studies, a trend of reduced spasticity in treated patients was noted. Adverse events were reported in each study, however combined TCH and CBD extracts were generally considered to be well-tolerated.</p> <p>Conclusion</p> <p>We found evidence that combined THC and CBD extracts may provide therapeutic benefit for MS spasticity symptoms. Although some objective measures of spasticity noted improvement trends, there were no changes found to be significant in post-treatment assessments. However, subjective assessment of symptom relief did often show significant improvement post-treatment. Differences in assessment measures, reports of adverse events, and dosage levels are discussed.</p

    Morphologic and neurochemical abnormalities in the auditory brainstem of the genetically epilepsy-prone hamster (GPG/Vall)

    No full text
    Purpose: This study was performed to evaluate whether audiogenic seizures, in a strain of genetically epilepsy-prone hamsters (GPG/Vall), might be associated with morphologic alterations in the cochlea and auditory brainstem. In addition, we used parvalbumin as a marker of neurons with high levels of activity to examine changes within neurons. Methods: Cochlear histology as well as parvalbumin immunohistochemistry were performed to assess possible abnormalities in the GPG/Vall hamster. Densitometry also was used to quantify levels of parvalbumin immunostaining within neurons and fibers in auditory nuclei. Results: In the present study, missing outer hair cells and spiral ganglion cells were observed in the GPG/Vall hamster. In addition, an increase was noted in the size of spiral ganglion cells as well as a decrease in the volume and cell size of the cochlear nucleus (CN), the superior olivary complex nuclei (SOC), and the nuclei of the lateral lemniscus (LL) and the inferior colliculus (IC). These alterations were accompanied by an increase in levels of parvalbumin immunostaining within CN, SOC, and LL neurons, as well as within parvalbumin-immunostained fibers in the CN and IC. Conclusions: These data are consistent with a cascade of atrophic changes starting in the cochlea and extending along the auditory brainstem in an animal model of inherited epilepsy. Our data also show an upregulation in parvalbumin immunostaining in the neuropil of the IC that may reflect a protective mechanism to prevent cell death in the afferent sources to this nucleus.Supported by the Spanish Grants FIS PI021697 and JCyL-UE SA077/04

    Electrical Recording of Brain Activity: The EEG and its Value in Assessing Drug Effects

    No full text
    corecore