12 research outputs found

    Neanderthal Use of Fish, Mammals, Birds, Starchy Plants and Wood 125-250,000 Years Ago

    Get PDF
    Neanderthals are most often portrayed as big game hunters who derived the vast majority of their diet from large terrestrial herbivores while birds, fish and plants are seen as relatively unimportant or beyond the capabilities of Neanderthals. Although evidence for exploitation of other resources (small mammals, birds, fish, shellfish, and plants) has been found at certain Neanderthal sites, these are typically dismissed as unusual exceptions. The general view suggests that Neanderthal diet may broaden with time, but that this only occurs sometime after 50,000 years ago. We present evidence, in the form of lithic residue and use-wear analyses, for an example of a broad-based subsistence for Neanderthals at the site of Payre, Ardèche, France (beginning of MIS 5/end of MIS 6 to beginning of MIS 7/end of MIS 8; approximately 125–250,000 years ago). In addition to large terrestrial herbivores, Neanderthals at Payre also exploited starchy plants, birds, and fish. These results demonstrate a varied subsistence already in place with early Neanderthals and suggest that our ideas of Neanderthal subsistence are biased by our dependence on the zooarchaeological record and a deep-seated intellectual emphasis on big game hunting

    Interactome Studies of Psychiatric Disorders

    No full text
    High comorbidity and complexity have precluded reliable diagnostic assessment and treatment of psychiatric disorders. Impaired molecular interactions may be relevant for underlying mechanisms of psychiatric disorders but by and large remain unknown. With the help of a number of publicly available databases and various technological tools, recent research has filled the paucity of information by generating a novel dataset of psychiatric interactomes. Different technological platforms including yeast two-hybrid screen, co-immunoprecipitation-coupled with mass spectrometry-based proteomics, and transcriptomics have been widely used in combination with cellular and molecular techniques to interrogate the psychiatric interactome. Novel molecular interactions have been identified in association with different psychiatric disorders including autism spectrum disorders, schizophrenia, bipolar disorder, and major depressive disorder. However, more extensive and sophisticated interactome research needs to be conducted to overcome the current limitations such as incomplete interactome databases and a lack of functional information among components. Ultimately, integrated psychiatric interactome databases will contribute to the implementation of biomarkers and therapeutic intervention
    corecore