9 research outputs found
Recommended from our members
Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments.
Manganese (Mn) oxides participate in a range of interactions with organic carbon (OC) that can lead to either carbon degradation or preservation. Here, we examine the abundance and composition of OC associated with biogenic and environmental Mn oxides to elucidate the role of Mn oxides as a reservoir for carbon and their potential for selective partitioning of particular carbon species. Mn oxides precipitated in natural brackish waters and by Mn(II)-oxidizing marine bacteria and terrestrial fungi harbor considerable levels of organic carbon (4.1-17.0 mol OC per kg mineral) compared to ferromanganese cave deposits which contain 1-2 orders of magnitude lower OC. Spectroscopic analyses indicate that the chemical composition of Mn oxide-associated OC from microbial cultures is homogeneous with bacterial Mn oxides hosting primarily proteinaceous carbon and fungal Mn oxides containing both protein- and lipopolysaccharide-like carbon. The bacterial Mn oxide-hosted proteins are involved in both Mn(II) oxidation and metal binding by these bacterial species and could be involved in the mineral nucleation process as well. By comparison, the composition of OC associated with Mn oxides formed in natural settings (brackish waters and particularly in cave ferromanganese rock coatings) is more spatially and chemically heterogeneous. Cave Mn oxide-associated organic material is enriched in aliphatic C, which together with the lower carbon concentrations, points to more extensive microbial or mineral processing of carbon in this system relative to the other systems examined in this study, and as would be expected in oligotrophic cave environments. This study highlights Mn oxides as a reservoir for carbon in varied environments. The presence and in some cases dominance of proteinaceous carbon within the biogenic and natural Mn oxides may contribute to preferential preservation of proteins in sediments and dominance of protein-dependent metabolisms in the subsurface biosphere
Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression
Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe-microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production