30 research outputs found

    Evolution of interfacial dislocation network during anisothermal high-temperature creep of a nickel-based superalloy

    Get PDF
    The effect of thermal cycling creep on the dislocation networks at the γ/γ′ interfaces in the MC2 superalloy is investigated. Tensile creep tests were performed under thermal cycling and isothermal conditions at low stress (80 MPa) and high temperature (1150 °C). In these conditions γ′ rafts may dissolve and reprecipitate during thermal cycling creep. The difference between the effects of isothermal and thermal cycling conditions on the γ/γ′ interface dislocation networks, characterized by transmission electron microscopy, is exposed, as well as their evolution during the cycle

    Etude des micromécanismes de déformation d'un alliage Ti-6Al-4V par déformation MET in situ (influence d'un traitement de surface)

    No full text
    Combinant une faible densité à d'excellentes propriétés mécaniques, le Ti-6Al-4V est l'alliage de titane le plus utilisé en aéronautique. Malgré cela, les mécanismes élémentaires de déformation du Ti-6Al-4V, responsables de ses propriétés mécaniques, ne sont pas encore totalement connus. L'objectif principal de ce travail est donc d'apporter une meilleure compréhension de ces micromécanismes. Cet alliage présentant d'assez mauvaises propriétés de surface, notamment au niveau de l'usure mécanique, nous nous sommes aussi intéressés aux modifications apportées par un traitement de surface protecteur (nitruration). Pour mener cette étude à bien, nous avons réalisé un grand nombre d'essais de traction in situ dans un microscope électronique en transmission (MET). Nous avons ainsi déterminé que la résistance de cet alliage est essentiellement due à la structure de cœur des dislocations vis de vecteur de Burgers de type a et que l'ordre à courte distance (OCD) a une influence notable dans la déformation des nodules. Le rôle des différents types d'interface dans la déformation a aussi été clairement défini. Concernant l'alliage traité en surface, les observations post mortem d'échantillons pré-déformés montrent que la couche nano-cristallisée en surface est une barrière à la propagation des dislocations et que, dans la couche de diffusion, l'OCD évolue vers la formation de nano-précipités ordonnés à longue distance conduisant à un mouvement plus collectif des dislocations. Enfin, nous avons réalisé pour la première fois un essai de traction MET in situ sur un échantillon préparé en section transverse grâce à la mise au point d'une méthode originale utilisant un FIBTi-6Al-4V is the most used titanium alloy in aeronautics because of its low density combined with excellent mechanical properties. However, the elementary mechanisms of deformation responsible for mechanical properties of Ti-6Al-4V alloys are not yet well understood. To provide a better knowledge of these micromechanisms is the main purpose of this work. As this alloy has relatively bad surface properties, particularly regarding mechanical wear, we are also interested in modifications induced by a protective surface treatment (nitridation). Numerous in situ transmission electron microscope (TEM) tensile experiments have been performed during this study. They have allowed us to determine that the strength is mainly due to the core structure of screw dislocations with a-type Burgers vectors and that short range order (SRO) has a non negligible effect in the deformation of nodules. The role of the different interfaces has been also clearly enlightened. Concerning the surface treated alloy, post mortem observations of pre-deformed samples show that the nano-crytallised layer at the surface is a barrier for the propagation of dislocations. In the diffusion layer SRO evolves to the formation of long range ordered nano-precipitates leading to a more localised deformation. Finally, an in situ TEM tensile experiment has been performed for the first time on a cross-section sample prepared with an original way using a FIBTOULOUSE-INSA (315552106) / SudocSudocFranceF

    Weak-beam study of dislocations in D022-Al3Ti deformed at 400°C

    No full text
    cited By 0International audiencePolycrystalline samples of Al3Ti with the D022-type structure have been plastically deformed at 400°C. Observations using weak-beam transmission electron microscopy show activation of dislocations with <100] or <110] Burgers vectors. The fine structure of [100] and [010] dislocations reveals strong stabilization effect on the pure edge character. [110] superdislocations, resulting from the interactions between [100] and [010] perfect dislocations, are dissociated in two identical superpartials separated by an antiphase boundary (APB). Their segmented shape together with the separation distances between the [110] superpartials point to a large anisotropy of APB energies whose estimated values on (001) and (111) are 13 ± 3 mJ/m2 and 64 ± 5 mJ/m2, respectively. The low mobility of <100] and <110] dislocations is highlighted and related to the low ductility of this material. © 2013 Copyright Taylor and Francis Group, LLC

    TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy

    No full text
    International audienceLocal order is evidenced in nodules of the duplex microstructure of a Ti-6Al-4V alloy using in situ straining experiments in a transmission electron microscope (TEM). This local order is identified to be short range order (SRO) because of the absence of superlattice diffraction spots, which are associated with alpha(2) (Ti3Al) precipitates and because of the formation of single pairs of mobile dislocations, which are a signature of SRO. The strengthening effect of this SRO is quantitatively evaluated. Qualitatively, the presence of SRO inhibits strongly the cross-slip in nodules in comparison with dislocations gliding in lamellar colonies where no SRO is present. The well-known strengthening effect of the core structure of dislocation in Ti-alloy is revisited here in the presence of SRO to determine its possible influence
    corecore