8 research outputs found

    Spiochaetopterus nonatoi

    No full text

    Biotic interaction between spionid polychaetes and bouchardiid brachiopods: Paleoecological, taphonomic and evolutionary implications

    No full text
    Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow−water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life−collected brachiopods, indicating a syn−vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace−making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid−infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn−vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post−mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases

    Admiralty Bay Benthos Diversity: A census of a complex polar ecosystem

    No full text
    A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay's entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity

    Feeding habits of the spider crab Libinia spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba bay, São Paulo, Brazil

    No full text
    The main goal of this study was the identification of the items of the diet of the L. spinosa, based on the stomach contents analysis. The crabs were obtained from Ubatuba region north-eastern shore of São Paulo State. In the laboratory, all the individuals were dissected, the stomach was retreated and fixed in 10% formaline. The alimentary items were identified under stereomicroscope and analysed by the method of Frequency of Occurrence. A total of 194 stomachs was analysed and nine alimentary items were obtained. Unindentified material was found in 98% of analysed stomach and poriferan were present in less then 1% of stomachs. These results pointed a diversified diet explored by this crab, as well as the employment of some different methods for food intake. This suggested that these crabs could occupy different position in the trophic chain.<br>O objetivo deste trabalho é identificar os itens alimentares que compõem a dieta de L. spinosa, por meio da análise do conteúdo estomacal. Os caranguejos foram coletados no litoral norte paulista (23º25’S-45º00’W). No laboratório, todos indivíduos foram dissecados, os estômagos foram retirados e fixados em formol 10%. Os itens alimentares foram identificados sob estereomicroscópio, sendo que para a análise foi utilizado o método Freqüência de Ocorrência. Foram analisados 194 estômagos, nos quais foram encontrados nove itens alimentares. A maior freqüência foi para material não identificado, ocorrendo em 98% dos estômagos analisados e Porifera foi o item com a menor freqüência, ocorrendo em menos de 1% dos estômagos. Com base nos resultados obtidos, sugere-se que o caranguejo L. spinosa apresenta uma dieta diversificada, sugerindo a utilização de diferentes métodos para a obtenção de alimento e por conseqüência podendo ocupar vários níveis na cadeia trófica
    corecore