1,992 research outputs found

    Electron Spin Resonance at the Level of 10000 Spins Using Low Impedance Superconducting Resonators

    Full text link
    We report on electron spin resonance (ESR) measurements of phosphorus donors localized in a 200 square micron area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design we are able to detect around 20000 spins with a signal-to-noise ratio (SNR) of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1 - 10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Due to the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell

    Measurements of strongly-anisotropic g-factors for spins in single quantum states

    Full text link
    We have measured the full angular dependence, as a function of the direction of magnetic field, for the Zeeman splitting of individual energy states in copper nanoparticles. The g-factors for spin splitting are highly anisotropic, with angular variations as large as a factor of five. The angular dependence fits well to ellipsoids. Both the principal-axis directions and g-factor magnitudes vary between different energy levels within one nanoparticle. The variations agree quantitatively with random-matrix theory predictions which incorporate spin-orbit coupling.Comment: 4 pages, 3 figures, 2 in colo

    Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures

    Full text link
    We perform quantum Hall measurements on three types of commercially available modulation doped Si/SiGe heterostructures to determine their suitability for depletion gate defined quantum dot devices. By adjusting the growth parameters, we are able to achieve electron gases with charge densities 1-3 X 10^{11}/cm^2 and mobilities in excess of 100,000 cm^2/Vs. Double quantum dot devices fabricated on these heterostructures show clear evidence of single charge transitions as measured in dc transport and charge sensing and exhibit electron temperatures of 100 mK in the single quantum dot regime.Comment: Related papers at http://pettagroup.princeton.ed

    Nonadiabatic quantum control of a semiconductor charge qubit

    Full text link
    We demonstrate multipulse quantum control of a single electron charge qubit. The qubit is manipulated by applying nonadiabatic voltage pulses to a surface depletion gate and readout is achieved using a quantum point contact charge sensor. We observe Ramsey fringes in the excited state occupation in response to a pi/2 - pi/2 pulse sequence and extract T2* ~ 60 ps away from the charge degeneracy point. Simulations suggest these results may be extended to implement a charge-echo by reducing the interdot tunnel coupling and pulse rise time, thereby increasing the nonadiabaticity of the pulses.Comment: Related papers at http://pettagroup.princeton.ed

    Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot

    Full text link
    We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscillations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field.Comment: see related papers at http://marcuslab.harvard.ed

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure
    • …
    corecore