1,079 research outputs found

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Super-resolution community detection for layer-aggregated multilayer networks

    Get PDF
    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the tradeoffs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with NN nodes and LL layers, which are drawn from an ensemble of Erd\H{o}s-R\'enyi networks. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit KK^*. When layers are aggregated via a summation, we obtain KO(NL/T)K^*\varpropto \mathcal{O}(\sqrt{NL}/T), where TT is the number of layers across which the community persists. Interestingly, if TT is allowed to vary with LL then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/LT/L decays more slowly than O(L1/2) \mathcal{O}(L^{-1/2}). Moreover, we find that thresholding the summation can in some cases cause KK^* to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. That is, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.Comment: 11 pages, 8 figure

    The Bowl Championship Series: A Mathematical Review

    Full text link
    We discuss individual components of the college football Bowl Championship Series, compare with a simple algorithm defined by random walks on a biased graph, attempt to predict whether the proposed changes will truly lead to increased BCS bowl access for non-BCS schools, and conclude by arguing that the true problem with the BCS Standings lies not in the computer algorithms, but rather in misguided addition.Comment: 12 pages, 2 figures, submitted to Notices of the AM

    Kantian fractionalization predicts the conflict propensity of the international system

    Get PDF
    The study of complex social and political phenomena with the perspective and methods of network science has proven fruitful in a variety of areas, including applications in political science and more narrowly the field of international relations. We propose a new line of research in the study of international conflict by showing that the multiplex fractionalization of the international system (which we label Kantian fractionalization) is a powerful predictor of the propensity for violent interstate conflict, a key indicator of the system's stability. In so doing, we also demonstrate the first use of multislice modularity for community detection in a multiplex network application. Even after controlling for established system-level conflict indicators, we find that Kantian fractionalization contributes more to model fit for violent interstate conflict than previously established measures. Moreover, evaluating the influence of each of the constituent networks shows that joint democracy plays little, if any, role in predicting system stability, thus challenging a major empirical finding of the international relations literature. Lastly, a series of Granger causal tests shows that the temporal variability of Kantian fractionalization is consistent with a causal relationship with the prevalence of conflict in the international system. This causal relationship has real-world policy implications as changes in Kantian fractionalization could serve as an early warning sign of international instability.Comment: 17 pages + 17 pages designed as supplementary online materia

    Compressing networks with super nodes

    Full text link
    Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network to be partitioned into a smaller network of 'super nodes', each super node comprising one or more nodes in the original network. To define the seeds of our super nodes, we apply the 'CoreHD' ranking from dismantling and decycling. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity, more stable across multiple (stochastic) runs within and between community detection algorithms, and overlap well with the results obtained using the full network
    corecore