30 research outputs found

    Cytotoxic T-cell precursor frequencies to HER-2 (369 – 377) in patients with HER-2/neu-positive epithelial tumours

    Get PDF
    HER-2/neu oncoprotein contains several major histocompatibility complex class I-restricted epitopes, which are recognised by cytotoxic T lymphocyte (CTL) on autologous tumours and therefore can be used in immune-based cancer therapies. Of these, the most extensively studied is HER-2(9(369)). In the present report, we used dendritic cells pulsed with HER-2(9(369)) to stimulate, in the presence of IL-7 and IL-12, the production of IFN-gamma by patients' CTL detected by the enzyme-linked immunosorbent spot-assay. Frequencies of peptide-specific precursors were estimated in HLA-A2, HLA-A3 and HLA-A26 patients with HER-2/neu-positive (+) breast, ovarian, lung, colorectal and prostate cancers and healthy individuals. We found increased percentages of such precursors in HLA-A2 (25%) and HLA-A26 (30%) patients, which were significantly higher (60%) in HLA-A3 patients. Our results demonstrate for the first time that pre-existing immunity to HER-2(9(369)) occurs in patients with colorectal, lung and prostate cancer. They also suggest that HER-2(9(369)) can be recognised by CTL, besides HLA-A2, also in the context of HLA-A3 and HLA-A26, thus increasing the applicability of HER-2(9(369))-based vaccinations in a considerably broader patients' population.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding

    Get PDF
    For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering

    Study of tectonics in relation to the seismic activity of the Dalvat area, Nasik District, Maharashtra, India using remote sensing and GIS techniques

    No full text
    Well-documented geological data ( from both field and satellite) in the Deccan Volcanic Provinces (DVP) in and around the Dalvat region, Nasik District, India has been analysed by Geographic Information System (GIS) techniques and reported in this paper so as to relate the geology and structures with recent seismicity. It has been the belief among earth scientists that the Deccan Traps in Maharashtra, India is tectonically stable as the region attained solidity long ago. However, recent activity in the study area altered this concept and it is now accepted that seismic activity is still continuing on a mild scale. As such, the need has arisen to take into consideration historical as well as recent geological data to study in detail the tectonic setup in the Deccan Traps. Using the well-known relationship between the shear zone, lineaments, and geomorphology, and incorporating these with tectonic events, an attempt has been made to explore the geology and structures in and around the Dalvat region. Field observations and signatures on remote sensing data show that there is evidence of fault traces in the form of shear zones and slickensides in the Deccan Traps near the Kosurde, Dhanoli, Chikhli, and Manchandar villages of the Nasik District. The study has further been incorporated with seismic density data. Magnitudes of 3.9 were recorded as the maximum micro-epicentres, and they fell on the shear fractures detected in the area of study. In order to identify seismically vulnerable areas, seismic hazard zonation (SHZ) mapping has been carried out. Different data layers, including structural, lithological, geomorphological, drainage, and soil have been visually interpreted, scanned, and rectified. A rose diagram of the lineaments shows trends in the NNE-SSW to NS falling on major seismic zones of the study area, showing weaker zones beneath the surface. Raster images were digitized for conversion to a vector coverage using ERDAS 8.6. and ArcGIS 8.3. The ordinal scale (qualitative) relative weighting rating technique was used to give a seismic hazard index (SHI) value to delineate various seismic hazard zones; namely very low, low, moderate, high, and very high

    Giant phenocryst basalts in the deccan trap

    No full text
    corecore