52 research outputs found

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,…,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Conductance oscillations of a spin-orbit stripe with polarized contacts

    Get PDF
    We investigate the linear conductance of a stripe of spin-orbit interaction in a 2D electron gas; that is, a 2D region of length â„“\ell along the transport direction and infinite in the transverse one in which a spin-orbit interaction of Rashba type is present. Polarization in the contacts is described by means of Zeeman fields. Our model predicts two types of conductance oscillations: Ramsauer oscillations in the minority spin transmission, when both spins can propagate, and Fano oscillations when only one spin propagates. The latter are due to the spin-orbit coupling with quasibound states of the non propagating spin. In the case of polarized contacts in antiparallel configuration Fano-like oscillations of the conductance are still made possible by the spin orbit coupling, even though no spin component is bound by the contacts. To describe these behaviors we propose a simplified model based on an ansatz wave function. In general, we find that the contribution for vanishing transverse momentum dominates and defines the conductance oscillations. Regarding the oscillations with Rashba coupling intensity, our model confirms the spin transistor behavior, but only for high degrees of polarization. Including a position dependent effective mass yields additional oscillations due to the mass jumps at the interfaces.Comment: 8.5 pages, 9 figure

    Polaron and bipolaron formation in the Hubbard-Holstein model: role of next-nearest neighbor electron hopping

    Full text link
    The influence of next-nearest neighbor electron hopping, t′t^{\prime}, on the polaron and bipolaron formation in a square Hubbard-Holstein model is investigated within a variational approach. The results for electron-phonon and electron-electron correlation functions show that a negative value of t′t^{\prime} induces a strong anisotropy in the lattice distortions favoring the formation of nearest neighbor intersite bipolaron. The role of t′t^{\prime}, electron-phonon and electron-electron interactions is briefly discussed in view of the formation of charged striped domains.Comment: 4 figure

    Froehlich Polaron and Bipolaron: Recent Developments

    Full text link
    It is remarkable how the Froehlich polaron, one of the simplest examples of a Quantum Field Theoretical problem, as it basically consists of a single fermion interacting with a scalar Bose field of ion displacements, has resisted full analytical or numerical solution at all coupling since 1950, when its Hamiltonian was first written. The field has been a testing ground for analytical, semi-analytical, and numerical techniques, such as path integrals, strong-coupling perturbation expansion, advanced variational, exact diagonalisation (ED), and quantum Monte Carlo (QMC) techniques. This article reviews recent developments in the field of continuum and discrete (lattice) Froehlich (bi)polarons starting with the basics and covering a number of active directions of research.Comment: 131 pages, 17 figures, 409 references, appear in Reports on Progress in Physic
    • …
    corecore