8 research outputs found

    Comparison of Two Multilocus Sequence Based Genotyping Schemes for Leptospira Species

    Get PDF
    Two independent multilocus sequence based genotyping schemes (denoted here as 7L and 6L for schemes with 7 and 6 loci, respectively) are in use for Leptospira spp., which has led to uncertainty as to which should be adopted by the scientific community. The purpose of this study was to apply the two schemes to a single collection of pathogenic Leptospira, evaluate their performance, and describe the practical advantages and disadvantages of each scheme. We used a variety of phylogenetic approaches to compare the output data and found that the two schemes gave very similar results. 7L has the advantage that it is a conventional multi-locus sequencing typing (MLST) scheme based on housekeeping genes and is supported by a publically accessible database by which genotypes can be readily assigned as known or new sequence types by any investigator, but is currently only applicable to L. interrogans and L. kirschneri. Conversely, 6L can be applied to all pathogenic Leptospira spp., but is not a conventional MLST scheme by design and is not available online. 6L sequences from 271 strains have been released into the public domain, and phylogenetic analysis of new sequences using this scheme requires their download and offline analysis

    Human Leptospirosis Caused by a New, Antigenically Unique Leptospira Associated with a Rattus Species Reservoir in the Peruvian Amazon

    Get PDF
    As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species “Leptospira licerasiae” serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010T, which has been deposited into internationally accessible culture collections. By microscopic agglutination test, “Leptospira licerasiae” serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti–L. fainei serovar Hurstbridge at a titer of 1∶100. LipL32, although not detectable by PCR, was detectable in “Leptospira licerasiae” serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against “Leptospira licerasiae” serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon

    The Phylum Spirochaetaceae

    No full text
    Spirochaetaceae is a family of spirochetes that cause syphilis, Lyme disease, epidemic and endemic relapsing fever, leptospirosis, swine dysentery, and periodontal disease. The spirochetes are presently classified as members of class Spirochaetes in the order Spirochaetales and are divided into three major phylogenetic groupings or families. The first family, Spirochaetaceae, contains species in the genera Borrelia, Brevinema, Cristispira, Spirochaeta, Spironema, and Treponema. The second family, Brachyspiraceae, contains the genus Brachyspira (Serpulina). The third family, Leptospiraceae, contains species of the genera Leptonema and Leptospira. One of the unique features of spirochetes is motility mediated by axial flagella with a rapid drifting rotation. The DNA of the Spirochaeta species contains guanine (G) + cytosine (C) ranging from 51 % to 65 mol %. The presence of several linear plasmids seems to cause the segmentation of Borrelia DNA into several linear pieces. This has led to the suggestion that the relatively small linear chromosome and the linear plasmids actually are minichromosomes. Various molecular and immunological detection methods have been developed for detection and identification of spirochetes

    The Family Leptospiraceae

    No full text
    corecore