144 research outputs found
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks
While Gaussian processes (GPs) are the method of choice for regression tasks,
they also come with practical difficulties, as inference cost scales cubic in
time and quadratic in memory. In this paper, we introduce a natural and
expressive way to tackle these problems, by incorporating GPs in sum-product
networks (SPNs), a recently proposed tractable probabilistic model allowing
exact and efficient inference. In particular, by using GPs as leaves of an SPN
we obtain a novel flexible prior over functions, which implicitly represents an
exponentially large mixture of local GPs. Exact and efficient posterior
inference in this model can be done in a natural interplay of the inference
mechanisms in GPs and SPNs. Thereby, each GP is -- similarly as in a mixture of
experts approach -- responsible only for a subset of data points, which
effectively reduces inference cost in a divide and conquer fashion. We show
that integrating GPs into the SPN framework leads to a promising probabilistic
regression model which is: (1) computational and memory efficient, (2) allows
efficient and exact posterior inference, (3) is flexible enough to mix
different kernel functions, and (4) naturally accounts for non-stationarities
in time series. In a variate of experiments, we show that the SPN-GP model can
learn input dependent parameters and hyper-parameters and is on par with or
outperforms the traditional GPs as well as state of the art approximations on
real-world data
Unifying generative and discriminative learning principles
<p>Abstract</p> <p>Background</p> <p>The recognition of functional binding sites in genomic DNA remains one of the fundamental challenges of genome research. During the last decades, a plethora of different and well-adapted models has been developed, but only little attention has been payed to the development of different and similarly well-adapted learning principles. Only recently it was noticed that discriminative learning principles can be superior over generative ones in diverse bioinformatics applications, too.</p> <p>Results</p> <p>Here, we propose a generalization of generative and discriminative learning principles containing the maximum likelihood, maximum a posteriori, maximum conditional likelihood, maximum supervised posterior, generative-discriminative trade-off, and penalized generative-discriminative trade-off learning principles as special cases, and we illustrate its efficacy for the recognition of vertebrate transcription factor binding sites.</p> <p>Conclusions</p> <p>We find that the proposed learning principle helps to improve the recognition of transcription factor binding sites, enabling better computational approaches for extracting as much information as possible from valuable wet-lab data. We make all implementations available in the open-source library Jstacs so that this learning principle can be easily applied to other classification problems in the field of genome and epigenome analysis.</p
Apples and oranges: avoiding different priors in Bayesian DNA sequence analysis
<p>Abstract</p> <p>Background</p> <p>One of the challenges of bioinformatics remains the recognition of short signal sequences in genomic DNA such as donor or acceptor splice sites, splicing enhancers or silencers, translation initiation sites, transcription start sites, transcription factor binding sites, nucleosome binding sites, miRNA binding sites, or insulator binding sites. During the last decade, a wealth of algorithms for the recognition of such DNA sequences has been developed and compared with the goal of improving their performance and to deepen our understanding of the underlying cellular processes. Most of these algorithms are based on statistical models belonging to the family of Markov random fields such as position weight matrix models, weight array matrix models, Markov models of higher order, or moral Bayesian networks. While in many comparative studies different learning principles or different statistical models have been compared, the influence of choosing different prior distributions for the model parameters when using different learning principles has been overlooked, and possibly lead to questionable conclusions.</p> <p>Results</p> <p>With the goal of allowing direct comparisons of different learning principles for models from the family of Markov random fields based on the <it>same a-priori information</it>, we derive a generalization of the commonly-used product-Dirichlet prior. We find that the derived prior behaves like a Gaussian prior close to the maximum and like a Laplace prior in the far tails. In two case studies, we illustrate the utility of the derived prior for a direct comparison of different learning principles with different models for the recognition of binding sites of the transcription factor Sp1 and human donor splice sites.</p> <p>Conclusions</p> <p>We find that comparisons of different learning principles using the same a-priori information can lead to conclusions different from those of previous studies in which the effect resulting from different priors has been neglected. We implement the derived prior is implemented in the open-source library Jstacs to enable an easy application to comparative studies of different learning principles in the field of sequence analysis.</p
- …