3 research outputs found

    Relationships between quantitative and reproductive fitness traits in animals

    No full text
    The relationships between quantitative and reproductive fitness traits in animals are of general biological importance for the development of population genetic models and our understanding of evolution, and of great direct economical importance in the breeding of farm animals. Two well investigated quantitative traits—body weight (BW) and litter size (LS)—were chosen as the focus of our review. The genetic relationships between them are reviewed in fishes and several mammalian species. We have focused especially on mice where data are most abundant. In mice, many individual genes influencing these traits have been identified, and numerous quantitative trait loci (QTL) located. The extensive data on both unselected and selected mouse populations, with some characterized for more than 100 generations, allow a thorough investigation of the dynamics of this relationship during the process of selection. Although there is a substantial positive genetic correlation between both traits in unselected populations, caused mainly by the high correlation between BW and ovulation rate, that correlation apparently declines during selection and therefore does not restrict a relatively independent development of both traits. The importance of these findings for overall reproductive fitness and its change during selection is discussed

    Deficits in social behavioral tests in a mouse model of alternating hemiplegia of childhood

    No full text
    Social behavioral deficits have been observed in patients diagnosed with alternating hemiplegia of childhood (AHC), rapid-onset dystonia-parkinsonism and CAPOS syndrome, in which specific missense mutations in ATP1A3, encoding the Na+, K+-ATPase α3 subunit, have been identified. To test the hypothesis that social behavioral deficits represent part of the phenotype of Na+, K+-ATPase α3 mutations, we assessed the social behavior of the Myshkin mouse model of AHC, which has an I810N mutation identical to that found in an AHC patient with co-morbid autism. Myshkin mice displayed deficits in three tests of social behavior: nest building, pup retrieval and the three-chamber social approach test. Chronic treatment with the mood stabilizer lithium enhanced nest building in wild-type but not Myshkin mice. In light of previous studies revealing a broad profile of neurobehavioral deficits in the Myshkin model – consistent with the complex clinical profile of AHC – our results suggest that Na+, K+-ATPase α3 dysfunction has a deleterious, but nonspecific, effect on social behavior. By better defining the behavioral profile of Myshkin mice, we identify additional ATP1A3-related symptoms for which the Myshkin model could be used as a tool to advance understanding of the underlying neural mechanisms and develop novel therapeutic strategies
    corecore