4,193 research outputs found

    The Effects of Symmetries on Quantum Fidelity Decay

    Full text link
    We explore the effect of a system's symmetries on fidelity decay behavior. Chaos-like exponential fidelity decay behavior occurs in non-chaotic systems when the system possesses symmetries and the applied perturbation is not tied to a classical parameter. Similar systems without symmetries exhibit faster-than-exponential decay under the same type of perturbation. This counter-intuitive result, that extra symmetries cause the system to behave in a chaotic fashion, may have important ramifications for quantum error correction.Comment: 5 pages, 3 figures, to be published Phys. Rev. E Rapid Communicatio

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Quantum Fidelity Decay of Quasi-Integrable Systems

    Full text link
    We show, via numerical simulations, that the fidelity decay behavior of quasi-integrable systems is strongly dependent on the location of the initial coherent state with respect to the underlying classical phase space. In parallel to classical fidelity, the quantum fidelity generally exhibits Gaussian decay when the perturbation affects the frequency of periodic phase space orbits and power-law decay when the perturbation changes the shape of the orbits. For both behaviors the decay rate also depends on initial state location. The spectrum of the initial states in the eigenbasis of the system reflects the different fidelity decay behaviors. In addition, states with initial Gaussian decay exhibit a stage of exponential decay for strong perturbations. This elicits a surprising phenomenon: a strong perturbation can induce a higher fidelity than a weak perturbation of the same type.Comment: 11 pages, 11 figures, to be published Phys. Rev.

    Information-disturbance tradeoff in quantum measurements

    Full text link
    We present a simple information-disturbance tradeoff relation valid for any general measurement apparatus: The disturbance between input and output states is lower bounded by the information the apparatus provides in distinguishing these two states.Comment: 4 Pages, 1 Figure. Published version (reference added and minor changes performed

    The most probable wave function of a single free moving particle

    Full text link
    We develop the most probable wave functions for a single free quantum particle given its momentum and energy by imposing its quantum probability density to maximize Shannon information entropy. We show that there is a class of solutions in which the quantum probability density is self-trapped with finite-size spatial support, uniformly moving hence keeping its form unchanged.Comment: revtex, 4 page

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Non-linear operations in quantum information theory

    Get PDF
    Quantum information theory is used to analize various non-linear operations on quantum states. The universal disentanglement machine is shown to be impossible, and partial (negative) results are obtained in the state-dependent case. The efficiency of the transformation of non-orthogonal states into orthogonal ones is discussed.Comment: 11 pages, LaTeX, 3 figures on separate page

    Nonlinear Schroedinger Equation in the Presence of Uniform Acceleration

    Get PDF
    We consider a recently proposed nonlinear Schroedinger equation exhibiting soliton-like solutions of the power-law form eqi(kxwt)e_q^{i(kx-wt)}, involving the qq-exponential function which naturally emerges within nonextensive thermostatistics [eqz[1+(1q)z]1/(1q)e_q^z \equiv [1+(1-q)z]^{1/(1-q)}, with e1z=eze_1^z=e^z]. Since these basic solutions behave like free particles, obeying p=kp=\hbar k, E=ωE=\hbar \omega and E=p2/2mE=p^2/2m (1q<21 \le q<2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration aa) or a particle moving under a constant force ma-ma. The latter interpretation naturally leads to the evolution equation it(ΦΦ0)=12q22m2x2[(ΦΦ0)2q]+V(x)(ΦΦ0)qi\hbar \frac{\partial}{\partial t}(\frac{\Phi}{\Phi_0}) = - \frac{1}{2-q}\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} [(\frac{\Phi}{\Phi_0})^{2-q}] + V(x)(\frac{\Phi}{\Phi_0})^{q} with V(x)=maxV(x)=max. Remarkably enough, the potential VV couples to Φq\Phi^q, instead of coupling to Φ\Phi, as happens in the familiar linear case (q=1q=1).Comment: 4 pages, no figure

    Classical interventions in quantum systems. I. The measuring process

    Get PDF
    The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary interaction of that system with a measuring apparatus, a further interaction of both with an unknown environment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is needed. The final result is represented by a completely positive map of the quantum state ρ\rho (possibly with a change of the dimensions of ρ\rho). A continuous limit of the above process leads to Lindblad's equation for the quantum dynamical semigroup.Comment: Final version, 14 pages LaTe
    corecore