298 research outputs found

    Accretion disk coronae of Intermediate Polar Cataclysmic Variables - 3D MagnetoHydro-Dynamic modeling and thermal X-ray emission

    Get PDF
    IPCVs contain a magnetic, rotating white dwarf surrounded by a magnetically truncated accretion disk. To explain their strong flickering X-ray emission, accretion has been successfully taken into account. Nevertheless, observations suggest that accretion phenomena could not be the only process behind it. An intense flaring activity occurring on the surface of the disk may generate a corona, contribute to the thermal X-ray emission and influence the system stability. Our purposes are: investigating the formation of an extended corona above the accretion disk, due to an intense flaring activity occurring on the disk surface; studying its effects on the disk and stellar magnetosphere; assessing its contribution to the observed X-ray flux. We have developed a 3D MHD model of a IPCV. The model takes into account gravity, disk viscosity, thermal conduction, radiative losses and coronal flare heating. To perform a parameter space exploration, several system conditions have been considered, with different magnetic field intensity and disk density values. From the results of the evolution of the model, we have synthesized the thermal X-ray emission. The simulations show the formation of an extended corona, linking disk and star. The flaring activity is capable of strongly influencing the disk configuration and its stability, effectively deforming the magnetic field lines. Hot plasma evaporation phenomena occur in the layer immediately above the disk. The flaring activity gives rise to a thermal X-ray emission in both the [0.1-2.0] keV and the [2.0-10] keV bands. An intense coronal activity occurring on the disk surface of an IPCV can affect the structure of the disk depending noticeably on the density of the disk and the magnetic field of the central object. Moreover, the synthesis of the thermal X-ray fluxes shows that this flaring activity may contribute to the observed thermal X-ray emission

    Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Get PDF
    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\AA}) and OVIII (18.97 {\AA}) line profiles. Results. The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈\approx 50 km s−1^{-1} and the other broader and consisting of subcomponents with redshift to speed in the range 200 ≈\approx 400 km s−1^{-1}. The profiles of OVIII lines appear more symmetric than C IV and are redshifted to speed ≈\approx 150 km s−1^{-1}. Conclusions. Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation.Comment: 11 pages, 10 figure

    Recent X-ray studies of stellar cycles and long-term variability

    Get PDF
    AbstractWe discuss recent X-ray studies of stellar cycles and long-term variability

    The Sun as an X-Ray Star. IV. The Contribution of Different Regions of the Corona to Its X-Ray Spectrum

    Get PDF
    We study X-ray-synthesized spectra of solar regions as templates to interpret analogous stellar spectra. We define three classes of coronal structures of different brightness, low (background quiet corona), medium (active regions), and high (active region cores), and determine their contribution to the solar X-ray emission measure versus temperature, EM(T), luminosity, and spectrum. This study defines the extent of the solar analogy quantitatively and accurately. To this end, we have selected a large sample of full-disk Yohkoh soft X-ray telescope observations taken between the maximum and the minimum of solar cycle 22, obtaining the contribution of each class to the whole Sun's EM(T). From the EM(T) distributions, we synthesize the X-ray spectra of the Sun and of the single classes of solar coronal regions as they would be collected with the ROSAT Position Sensitive Proportional Counter (PSPC) and ASCA Solid-State Imaging Spectrometer. We find that the Sun during the cycle fits well in the stellar scenario as a low-activity star. The ROSAT PSPC hardness ratio (HR) and surface X-ray flux, FPSPC, both increase going from the background corona to the active regions and the cores of the active regions, and range between the values of low and intermediate activity stars. We suggest that the coronae of these stars may be explained as the effect of structures similar to those present on the Sun and that the various levels of X-ray luminosity, HR, and FPSPC are achieved by changing the surface coverage of the different classes of coronal regions

    A new look at Spitzer primary transit observations of the exoplanet HD189733b

    Get PDF
    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6μ\mum during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor 1.61.6. This is a worthwhile trade-off for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6μ\mum, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2×10−4\sim 2 \times 10^{-4} in the IR, (5) no evidence of stellar variability at the same photometric level within 1 year.Comment: 43 pages, 18 figure

    Large Scale Properties of Coronal Heating along the Solar Cycle

    Get PDF
    We discuss various studies of the global properties of coronal heating. Some of them find power laws tying the X-ray luminosity with the magnetic flux of individual structures, of the whole Sun, and of active solar-type stars. Others are based on methods to model the Sun as an X-ray star. We also briefly discuss solar-like active stars and how the Sun fits in the whole scenario. We use a new model, including all flares, of the Sun as an X-ray star to describe the evolution of the corona along the solar cycle and the implications on the heating of closed coronal structures. We point out that, as activity increases, more heating is released into the confined coronal plasma and such a heating has to be, on average, more intense in order to explain the widespread evidence of a temperature increase with activity. By the same token, nanoflare heating (if existent) has to increase and decrease along the cycle differently from flares

    Modeling an X-ray flare on Proxima Centauri: Evidence of two flaring loop components and of two heating mechanisms at work

    Get PDF
    We model in detail a flare observed on Proxima Centauri with the EPIC-PN on board XMM-Newton at high statistics and high time resolution and coverage. Time-dependent hydrodynamic loop modeling is used to describe the rise and peak of the light curve, and a large fraction of the decay, including its change of slope and a secondary maximum, over more than 2 h. The light curve, the emission measure and the temperature derived from the data allow us to constrain the loop morphology and the heating function and to show that this flare can be described with two components: a major one triggered by an intense heat pulse injected in a single flaring loop with half-length ≈1.0 × 1010 cm, the other one by less intense heat pulses released about 1/2 h after the first one in related loop systems, probably arcades, with the same half-length. The heat functions of the two loop systems appear very similar: an intense pulse located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The latter result and the similarity to at least one solar event (the Bastille Day flare in 2000) indicate that this pattern may be common to solar and stellar flares. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and the USA (NASA)

    Coronal fuzziness modelled with pulse-heated multistranded loop systems

    Full text link
    Coronal active regions are observed to get fuzzier and fuzzier (i.e. more and more confused and uniform) in harder and harder energy bands or lines. We explain this evidence as due to the fine multi-temperature structure of coronal loops. To this end, we model bundles of loops made of thin strands, each heated by short and intense heat pulses. For simplicity, we assume that the heat pulses are all equal and triggered only once in each strand at a random time. The pulse intensity and cadence are selected so as to have steady active region loops (∼3\sim 3 MK), on the average. We compute the evolution of the confined heated plasma with a hydrodynamic loop model. We then compute the emission along each strand in several spectral lines, from cool (≤1\leq 1 MK), to warm (2−32-3 MK) lines, detectable with Hinode/EIS, to hot X-ray lines. The strands are then put side-by-side to construct an active region loop bundle. We find that in the warm lines (2−32-3 MK) the loop emission fills all the available image surface. Therefore the emission appears quite uniform and it is difficult to resolve the single loops, while in the cool lines the loops are considerably more contrasted and the region is less fuzzy. The main reasons for this effect are that, during their evolution, i.e. pulse heating and slow cooling, each strand spends a relatively long time at temperatures around 2−32-3 MK, and that it has a high emission measure during that phase, so the whole region appears more uniform or smudged. We make the prediction that the fuzziness should be reduced in the hot UV and X-ray lines.Comment: 27 pages, 14 figure

    X-ray emission mechanisms in protostellar jets

    Get PDF
    Prompted by the recent detection of X-ray emission from Herbig-Haro objects, we studied the interaction between a supersonic jet originating from a young stellar object and the ambient medium; our aim is to investigate the mechanisms causing the X-ray emission. Our model takes into account the radiative losses from optically in plasmas and Spitzer's thermal conduction including saturation effects. We explored the parameter space defined by the density contrast between the ambient medium and the jet and by the Mach number, to infer the configurations which can give rise to X-ray emission. From the models, we derived the X-ray emission as it would be observed with Chandra/ACIS-I and XMM-Newton/EPIC-pn, using the MEKAL spectral code and including the absorption of interstellar medium. Here we discuss a representative case which produces, without any ad hoc assumption, Xray emission with characteristics very similar to those observed in the protostellar jet, HH 154. We find that the X-ray emission originates from a blob localized just behind the bow shock, moving with velocity 500 km/s. We predict, therefore, among other features, a detectable proper motion of the X-ray blob, which is interesting for future observations
    • …
    corecore