70,664 research outputs found
Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge
In a previous work, we presented a new method to account for the Gribov
ambiguities in non-Abelian gauge theories. The method consists on the
introduction of an extra constraint which directly eliminates the infinitesimal
Gribov copies without the usual geometric approach. Such strategy allows to
treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply
this method to a gauge which interpolates among the Landau and maximal Abelian
gauges. The result is a local and power counting renormalizable action, free of
infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon
propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions
included. 24 pages, to appear in EPJ
Status of background-independent coarse-graining in tensor models for quantum gravity
A background-independent route towards a universal continuum limit in
discrete models of quantum gravity proceeds through a background-independent
form of coarse graining. This review provides a pedagogical introduction to the
conceptual ideas underlying the use of the number of degrees of freedom as a
scale for a Renormalization Group flow. We focus on tensor models, for which we
explain how the tensor size serves as the scale for a background-independent
coarse-graining flow. This flow provides a new probe of a universal continuum
limit in tensor models. We review the development and setup of this tool and
summarize results in the 2- and 3-dimensional case. Moreover, we provide a
step-by-step guide to the practical implementation of these ideas and tools by
deriving the flow of couplings in a rank-4-tensor model. We discuss the
phenomenon of dimensional reduction in these models and find tentative first
hints for an interacting fixed point with potential relevance for the continuum
limit in four-dimensional quantum gravity.Comment: 28 pages, Review prepared for the special issue "Progress in Group
Field Theory and Related Quantum Gravity Formalisms" in "Universe
An Analysis of the Combustion Behavior of Ethanol, Butanol, Iso-Octane, Gasoline, and Methane in a Direct-Injection Spark-Ignition Research Engine
Future automotive fuels are expected to contain significant quantities of bio-components. This poses a great challenge to the designers of novel low-CO2 internal combustion engines because biofuels have very different properties to those of most typical hydrocarbons. The current article presents results of firing a direct-injection spark-ignition optical research engine on ethanol and butanol and comparing those to data obtained with gasoline and iso-octane. A multihole injector, located centrally in the combustion chamber, was used with all fuels. Methane was also employed by injecting it into the inlet plenum to provide a benchmark case for well-mixed “homogeneous” charge preparation. The study covered stoichiometric and lean mixtures (λ = 1.0 and λ = 1.2), various spark advances (30–50° CA), a range of engine temperatures (20–90°C), and diverse injection strategies (single and “split” triple). In-cylinder gas sampling at the spark-plug location and at a location on the pent-roof wall was also carried out using a fast flame ionization detector to measure the equivalence ratio of the in-cylinder charge and identify the degree of stratification. Combustion imaging was performed through a full-bore optical piston to study the effect of injection strategy on late burning associated with fuel spray wall impingement. Combustion with single injection was fastest for ethanol throughout 20–90°C, but butanol and methane were just as fast at 90°C; iso-octane was the slowest and gasoline was between iso-octane and the alcohols. At 20°C, λ at the spark plug location was 0.96–1.09, with gasoline exhibiting the largest and iso-octane the lowest value. Ethanol showed the lowest degree of stratification and butanol the largest. At 90°C, stratification was lower for most fuels, with butanol showing the largest effect. The work output with triple injection was marginally higher for the alcohols and lower for iso-octane and gasoline (than with single injection), but combustion stability was worse for all fuels. Triple injection produced a lower degree of stratification, with leaner λ at the spark plug than single injection. Combustion imaging showed much less luminous late burning with tripe injection. In terms of combustion stability, the alcohols were more robust to changes in fueling (λ = 1.2) than the liquid hydrocarbons
On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories
An alternative method to account for the Gribov ambiguities in gauge theories
is presented. It is shown that, to eliminate Gribov ambiguities, at
infinitesimal level, it is required to break the BRST symmetry in a soft
manner. This can be done by introducing a suitable extra constraint that
eliminates the infinitesimal Gribov copies. It is shown that the present
approach is consistent with the well established known cases in the literature,
i.e., the Landau and maximal Abelian gauges. The method is valid for gauges
depending exclusively on the gauge field and is restricted to classical level.
However, occasionally, we deal with quantum aspects of the technique, which are
used to improve the results.Comment: 29 pp. No figures. Discussions added. Final version to appear in EPJ
Modeling the line variations from the wind-wind shock emissions of WR 30a
The study of Wolf-Rayet stars plays an important role in evolutionary
theories of massive stars. Among these objects, ~ 20% are known to be in binary
systems and can therefore be used for the mass determination of these stars.
Most of these systems are not spatially resolved and spectral lines can be used
to constrain the orbital parameters. However, part of the emission may
originate in the interaction zone between the stellar winds, modifying the line
profiles and thus challenging us to use different models to interpret them. In
this work, we analyzed the HeII4686\AA + CIV4658\AA blended lines of WR30a
(WO4+O5) assuming that part of the emission originate in the wind-wind
interaction zone. In fact, this line presents a quiescent base profile,
attributed to the WO wind, and a superposed excess, which varies with the
orbital phase along the 4.6 day period. Under these assumptions, we were able
to fit the excess spectral line profile and central velocity for all phases,
except for the longest wavelengths, where a spectral line with constant
velocity seems to be present. The fit parameters provide the eccentricity and
inclination of the binary orbit, from which it is possible to constrain the
stellar masses.Comment: accepted for publication in the MNRA
A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges
In this work, we study the propagators of matter fields within the framework
of the Refined Gribov-Zwanziger theory, which takes into account the effects of
the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills
theory. In full analogy with the pure gluon sector of the Refined
Gribov-Zwanziger action, a non-local long-range term in the inverse of the
Faddeev-Popov operator is added in the matter sector. Making use of the recent
BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri
et al 2016], the propagators of scalar and quark fields in the adjoint and
fundamental representations of the gauge group are worked out explicitly in the
linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice
data are available, our results exhibit good qualitative agreement.Comment: 27 pages, no figures; V2, minor modifications, to appear in EPJ
A water level relationship between consecutive gauge stations along Solim\~oes/Amazonas main channel: a wavelet approach
Gauge stations are distributed along the Solim\~oes/Amazonas main channel to
monitor water level changes over time. Those measurements help quantify both
the water movement and its variability from one gauge station to the next
downstream. The objective of this study is to detect changes in the water level
relationship between consecutive gauge stations along the Solim\~oes/Amazonas
main channel, since 1980. To carry out the analyses, data spanning from 1980 to
2010 from three consecutive gauges (Tefe, Manaus and Obidos) were used to
compute standardized daily anomalies. In particular for infra-annual periods it
was possible to detect changes for the water level variability along the
Solim\~oes/Amazonas main channel, by applying the Morlet Wavelet Transformation
(WT) and Wavelet Cross Coherence (WCC) methods. It was possible to quantify the
waves amplitude for the WT infra-annual scaled-period and were quite similar to
the three gauge stations denoting that the water level variability are related
to the same hydrological forcing functions. Changes in the WCC was detected for
the Manaus-Obidos river stretch and this characteristic might be associated
with land cover changes in the floodplains. The next steps of this research,
will be to test this hypotheses by integrating land cover changes into the
floodplain with hydrological modelling simulations throughout the time-series
- …
