42,102 research outputs found

    Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge

    Get PDF
    In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions included. 24 pages, to appear in EPJ

    Status of background-independent coarse-graining in tensor models for quantum gravity

    Full text link
    A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underlying the use of the number of degrees of freedom as a scale for a Renormalization Group flow. We focus on tensor models, for which we explain how the tensor size serves as the scale for a background-independent coarse-graining flow. This flow provides a new probe of a universal continuum limit in tensor models. We review the development and setup of this tool and summarize results in the 2- and 3-dimensional case. Moreover, we provide a step-by-step guide to the practical implementation of these ideas and tools by deriving the flow of couplings in a rank-4-tensor model. We discuss the phenomenon of dimensional reduction in these models and find tentative first hints for an interacting fixed point with potential relevance for the continuum limit in four-dimensional quantum gravity.Comment: 28 pages, Review prepared for the special issue "Progress in Group Field Theory and Related Quantum Gravity Formalisms" in "Universe

    Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels that may contain significant quantities of bio-components in an attempt to reduce CO2 emissions from vehicles and contribute to energy sustainability. However, most biofuels have different chemical and physical properties to those of typical hydrocarbons; these can lead to different mechanisms of mixture preparation and combustion. The current paper presents results from an optical study of combustion in a direct-injection spark-ignition research engine with gasoline, iso-octane, ethanol and butanol fuels injected from a centrally located multi-hole injector. Methane was also employed by injecting it into the inlet plenum of the engine to provide a benchmark case for well-mixed ā€˜homogeneousā€™ charge preparation. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles for each fuel, in order to calculate in-cylinder rates of flame growth and motion. In-cylinder pressure traces were used for heat release analysis and for comparison with the image-processing results. All tests were performed at 1500 RPM with 0.5 bar intake plenum pressure. Stoichiometric (Ļ• = 1.0) and lean (Ļ• = 0.83) conditions were considered. The combustion characteristics were analysed with respect to laminar and turbulent burning velocities obtained from combustion bombs in the literature and from traditional combustion diagrams in order to bring all data into the context of current theories and allow insights by making comparisons were appropriate

    An Analysis of the Combustion Behavior of Ethanol, Butanol, Iso-Octane, Gasoline, and Methane in a Direct-Injection Spark-Ignition Research Engine

    Get PDF
    Future automotive fuels are expected to contain significant quantities of bio-components. This poses a great challenge to the designers of novel low-CO2 internal combustion engines because biofuels have very different properties to those of most typical hydrocarbons. The current article presents results of firing a direct-injection spark-ignition optical research engine on ethanol and butanol and comparing those to data obtained with gasoline and iso-octane. A multihole injector, located centrally in the combustion chamber, was used with all fuels. Methane was also employed by injecting it into the inlet plenum to provide a benchmark case for well-mixed ā€œhomogeneousā€ charge preparation. The study covered stoichiometric and lean mixtures (Ī» = 1.0 and Ī» = 1.2), various spark advances (30ā€“50Ā° CA), a range of engine temperatures (20ā€“90Ā°C), and diverse injection strategies (single and ā€œsplitā€ triple). In-cylinder gas sampling at the spark-plug location and at a location on the pent-roof wall was also carried out using a fast flame ionization detector to measure the equivalence ratio of the in-cylinder charge and identify the degree of stratification. Combustion imaging was performed through a full-bore optical piston to study the effect of injection strategy on late burning associated with fuel spray wall impingement. Combustion with single injection was fastest for ethanol throughout 20ā€“90Ā°C, but butanol and methane were just as fast at 90Ā°C; iso-octane was the slowest and gasoline was between iso-octane and the alcohols. At 20Ā°C, Ī» at the spark plug location was 0.96ā€“1.09, with gasoline exhibiting the largest and iso-octane the lowest value. Ethanol showed the lowest degree of stratification and butanol the largest. At 90Ā°C, stratification was lower for most fuels, with butanol showing the largest effect. The work output with triple injection was marginally higher for the alcohols and lower for iso-octane and gasoline (than with single injection), but combustion stability was worse for all fuels. Triple injection produced a lower degree of stratification, with leaner Ī» at the spark plug than single injection. Combustion imaging showed much less luminous late burning with tripe injection. In terms of combustion stability, the alcohols were more robust to changes in fueling (Ī» = 1.2) than the liquid hydrocarbons
    • ā€¦
    corecore