54,841 research outputs found

    Energy in an Expanding Universe in the Teleparallel Geometry

    Get PDF
    The main purpose of this paper is to explicitly verify the consistency of the energy-momentum and angular momentum tensor of the gravitational field established in the Hamiltonian structure of the Teleparallel Equivalent of General Relativity (TEGR). In order to reach these objectives, we obtained the total energy and angular momentum (matter plus gravitational field) of the closed universe of the Friedmann-Lemaitre-Robertson-Walker (FLRW). The result is compared with those obtained from the pseudotensors of Einstein and Landau-Lifshitz. We also applied the field equations (TEGR) in an expanding FLRW universe. Considering the stress energy-momentum tensor for a perfect fluid, we found a teleparallel equivalent of Friedmann equations of General Relativity (GR).Comment: 19 pages, no figures. Revised in view of Referee's comments. Version to appear in the Brazilian Journal of Physic

    Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells

    Full text link
    In this work we investigate electron-impurity binding energy in GaN/HfO2_2 quantum wells. The calculation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction between the electron-impurity and (iii) the interactions among electron and impurity image charges. The theoretical model account for the solution of the time-dependent Schr\"odinger equation and the results shows how the magnitude of the electron-impurity binding energy depends on the position of impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is exposed with the comparison of the results for GaN/HfO2_2 with those of a more typical GaN/AlN system, for two different confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure

    A new approach on the stability analysis in ELKO cosmology

    Get PDF
    In this work it has been developed a new approach to study the stability of a system composed by an ELKO field interacting with dark matter, which could give some contribution in order to alleviate the cosmic coincidence problem. It is assumed that the potential which characterizes the ELKO field is not specified, but it is related to a constant parameter δ\delta. The strength of the interaction between matter and ELKO field is characterized by a constant parameter β\beta and it is also assumed that both ELKO field as matter energy density are related to their pressures by equations of state parameters ωϕ\omega_\phi and ωm\omega_m, respectively. The system of equations is analysed by a dynamical system approach. It has been found the conditions of stability between the parameters δ\delta and β\beta in order to have stable fixed points for the system for different values of the equation of state parameters ωϕ\omega_\phi and ωm\omega_m, and the results are presented in form of tables. The possibility of decay of ELKO field into dark matter or vice versa can be read directly from the tables, since the parameters δ\delta and β\beta satisfy some inequalities. It allows us to constrain the potential assuming that we have a stable system for different interactions terms between the ELKO field and dark matter. The cosmic coincidence problem can be alleviated for some specific relations between the parameters of the model.Comment: 16 pages, some new comments in the Introduction and at the begining of Section I
    • …
    corecore