1,038 research outputs found

    Tracheostomy must be individualized!

    Get PDF
    Tracheostomy is one of the most frequent procedures carried out in critically ill patients with major advantages compared to translaryngeal endotracheal intubation such as reduced laryngeal anatomical alterations, reduced inspiratory load, better patient's tolerance and nursing. Thus, tracheostomy can enhance patient's care in patients who need prolonged mechanical ventilation and/or control of airways. The right timing of tracheostomy remains controversial, however it appears that early tracheostomy in selected severe trauma, burn and neurological patients could be effective to reduce the duration of mechanical ventilation intensive care stay and costs. Percutaneous tracheostomy techniques are becoming the procedure of choice in the majority of the cases, since they are safe, easy and quick, and complications are minor. However, percutaneous tracheostomies should be always performed by experienced physicians to avoid unnecessary additional complications. It is not clear the superiority of one percutaneous technique compared to another, but experience of the operator and clinical individual anatomical, physiopathological characteristics of the patient should be always considered. We believe that the operator should have experience of at least one intrusive and one extrusive percutaneous technique. The general "optimal" tracheostomy technique and timing do not exist, but tracheostomy should be targeted on the patient's individual clinical characteristics

    Clinical review: Positive end-expiratory pressure and cardiac output

    Get PDF
    In patients with acute lung injury, high levels of positive end-expiratory pressure (PEEP) may be necessary to maintain or restore oxygenation, despite the fact that 'aggressive' mechanical ventilation can markedly affect cardiac function in a complex and often unpredictable fashion. As heart rate usually does not change with PEEP, the entire fall in cardiac output is a consequence of a reduction in left ventricular stroke volume (SV). PEEP-induced changes in cardiac output are analyzed, therefore, in terms of changes in SV and its determinants (preload, afterload, contractility and ventricular compliance). Mechanical ventilation with PEEP, like any other active or passive ventilatory maneuver, primarily affects cardiac function by changing lung volume and intrathoracic pressure. In order to describe the direct cardiocirculatory consequences of respiratory failure necessitating mechanical ventilation and PEEP, this review will focus on the effects of changes in lung volume, factors controlling venous return, the diastolic interactions between the ventricles and the effects of intrathoracic pressure on cardiac function, specifically left ventricular function. Finally, the hemodynamic consequences of PEEP in patients with heart failure, chronic obstructive pulmonary disease and acute respiratory distress syndrome are discussed

    Airway closure: the silent killer of peripheral airways

    Get PDF
    Tidal airway closure occurs when the closing volume exceeds the end-expiratory lung volume, and it is commonly observed in general anaesthesia, particularly in obese patients. Animal studies suggest that tidal airway closure causes injury to peripheral airways, characterized histologically by rupture of alveolar-airway attachments, denuded epithelium, disruption of airway smooth muscle and increased numbers of polymorphonuclear leucocytes in the alveolar walls. Functionally, this injury is characterized by increased airway resistance. Peripheral airway injury may be a common yet unrecognized complication and may be avoided by application of low levels of positive end-expiratory pressure. Measurement of exhaled nitric oxide is a simple method that may permit early detection of unsuspected peripheral airway injury during mechanical ventilation, both in healthy and diseased lungs

    The lung and the brain: a dangerous cross-talk

    Get PDF
    Brain or lung injury or both are frequent causes of admission to intensive care units and are associated with high morbidity and mortality rates. Mechanical ventilation, which is commonly used in the management of these critically ill patients, can induce an inflammatory response, which may be involved in distal organ failure. Thus, there may be a complex crosstalk between the lungs and other organs, including the brain. Interestingly, survivors from acute lung injury/acute respiratory distress syndrome frequently have some cognitive deterioration at hospital discharge. Such neurologic dysfunction might be a secondary marker of injury and the neuroanatomical substrate for downstream impairment of other organs. Brainlung interactions have received little attention in the literature, but recent evidence suggests that both the lungs and brain can promote inflammation through common mediators. The present commentary discusses the main physiological issues related to brain-lung interactions

    Regional Assessment of Sub-Hourly Annual Rainfall Maxima

    Get PDF
    The assessment of rainfall extremes at sub-hourly scales is generally hindered by a lack of rainfall data at small timescale resolutions. This study proposes a methodology for assessing mean annual maximum rainfall at the sub-hourly scale by blending historical time series of annual maxima recorded by mechanical stations (operating at hourly scales) up to the end of the past century with newer time series of annual maxima at higher time resolutions recorded by automatic stations installed over the past twenty years. A linear correlation was found at the regional scale between the shape parameter controlling the dependency of rainfall maxima with a duration longer than one hour and the shape parameter of the dependency of rainfall maxima with the durations shorter than one hour. Thanks to this correlation, data recorded at the mechanical stations could be exploited to assess sub-hourly mean annual maxima. The proposed hybrid procedure was verified and was found to provide estimates with an accuracy close to those obtained with the high-resolution data, i.e., our best estimates. Moreover, the proposed procedure outperforms what could be achieved by spatially interpolating the best estimates at those locations where only hourly data are availabl

    Tactile based robotic skills for cable routing operations

    Get PDF
    This paper proposes a set of tactile based skills to perform robotic cable routing operations for deformable linear objects (DLOs) characterized by considerable stiffness and constrained at both ends. In particular, tactile data are exploited to reconstruct the shape of the grasped portion of the DLO and to estimate the future local one. This information is exploited to obtain a grasping configuration aligned to the local shape of the DLO, starting from a rough initial grasping pose, and to follow the DLO's contour in the three-dimensional space. Taking into account the distance travelled along the arc length of the DLO, the robot can detect the cable segments that must be firmly grasped and inserted in intermediate clips, continuing then to slide along the contour until the next DLO's portion, that has to be clipped, is reached. The proposed skills are experimentally validated with an industrial robot on different DLOs in several configurations and on a cable routing use case

    High flow biphasic positive airway pressure by helmet – effects on pressurization, tidal volume, carbon dioxide accumulation and noise exposure

    Get PDF
    Abstract INTRODUCTION: Non-invasive ventilation (NIV) with a helmet device is often associated with poor patient-ventilator synchrony and impaired carbon dioxide (CO2) removal, which might lead to failure. A possible solution is to use a high free flow system in combination with a time-cycled pressure valve placed into the expiratory circuit (HF-BiPAP). This system would be independent from triggering while providing a high flow to eliminate CO2. METHODS: Conventional pressure support ventilation (PSV) and time-cycled biphasic pressure controlled ventilation (BiVent) delivered by an Intensive Care Unit ventilator were compared to HF-BiPAP in an in vitro lung model study. Variables included delta pressures of 5 and 15 cmH2O, respiratory rates of 15 and 30 breaths/min, inspiratory efforts (respiratory drive) of 2.5 and 10 cmH2O) and different lung characteristics. Additionally, CO2 removal and noise exposure were measured. RESULTS: Pressurization during inspiration was more effective with pressure controlled modes compared to PSV (P < 0.001) at similar tidal volumes. During the expiratory phase, BiVent and HF-BiPAP led to an increase in pressure burden compared to PSV. This was especially true at higher upper pressures (P < 0.001). At high level of asynchrony both HF-BiPAP and BiVent were less effective. Only HF-BiPAP ventilation effectively removed CO2 (P < 0.001) during all settings. Noise exposure was higher during HF-BiPAP (P < 0.001). CONCLUSIONS: This study demonstrates that in a lung model, the efficiency of NIV by helmet can be improved by using HF-BiPAP. However, it imposes a higher pressure during the expiratory phase. CO2 was almost completely removed with HF-BiPAP during all settings
    • …
    corecore