30 research outputs found

    NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    Get PDF
    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants

    The disappearance of femoral head and neck resulting from extensive bone defect caused by secondary syphilis: a case report and literature review

    No full text
    Abstract Background Treponema Pallidum (TP), the pathogen of syphilis, commonly infects bones in cases of congenital and tertiary syphilis, but it is rare in the primary and secondary stages. With its mild symptoms and rare clinical findings, it might be easy to dismiss the diagnosis of early syphilis. Usually, effective results can be achieved after the conventional strategy of antibiotic treatments, mainly penicillin. To our knowledge, our case is so far the most serious reported case of destructive bone lesion in secondary syphilis, and our treatment for the case is the first strategy using total hip arthroplasty in secondary syphilis. Case presentation We present the case of a 71-year-old man with local repeated pain and dysfunction in the right hip. Radiologic examinations showed the disappearance of the ipsilateral femoral head and neck. After excluding the aetiologies of cancer metastasis and tuberculosis, we confirmed the diagnosis of syphilitic arthritis. The patient received the medical treatment of antibiotics and the surgical treatment of total hip arthroplasty. At the follow-up of 1, 3, and 5.5 years after the operation, the patient presented with a pain-free and functional hip prosthesis without local signs of infection and loosening. Conclusions This report highlights the difficulties of early diagnosis of secondary syphilis with bone involvement. Bone defect of the femur with secondary syphilis, especially at the proximal femur, was an extremely rare complication in the previous reports. Our case was the first case of a patient who experienced the disappearance of femoral head and neck caused by secondary syphilis. Follow-up after the operation proved the successful treatment of the extensive bone defect of femur by total hip arthroplasty

    Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF): A pilot study

    No full text
    While conventional antidepressants benefit many patients with major depressive disorder (MDD), as much as eight to 12 weeks can elapse before significant improvements in depressive symptoms are seen. Treatments that act more rapidly in MDD are urgently needed. Sleep deprivation (SD) has been shown to produce a rapid antidepressant response within one day in 50-60% of patients with MDD; thus, identifying its antidepressant mechanism may contribute to the development of antidepressants that act more rapidly. The present study evaluated the effects of 39 h of SD on mood, as well as on plasma levels of brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in patients with MDD. After a drug-free period of at least two weeks, 11 patients (6 males, 5 females; ages 25-62) who met DSM-IV criteria for MDD underwent total SD. Plasma samples for BDNF and VEGF assays were collected on Days 1 (baseline) and 2. The six-item Hamilton Rating Scale for Depression (HAMD-6) was the primary outcome measure. HAMD-6 scores decreased significantly after SD (Day 2). SD was negatively correlated with change in HAMD-6 score and change in VEGF levels, indicating that as depression scores decreased following SD, VEGF plasma levels increased. In contrast, SD did not alter plasma BDNF concentrations, nor was an association found between BDNF levels and clinical improvement on the HAMD-6. These results suggest that SD is associated with mood-related changes in plasma VEGF levels, but not plasma BDNF levels. Further studies using larger sample sizes are needed to confirm these preliminary findings. Published by Elsevier Inc.National Institute of Mental Health, National Institutes of Health, and Department of Health & Human Services (IRP-NIMH-NIH-DHHS)7SE research unit and research staf

    Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    Full text link
    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia

    Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans

    No full text
    Background: Bcl-2 is a major regulator of neural plasticity and cellular resilience. A single nucleotide polymorphism (SNP) in the Bcl-2 gene, Bcl-2 rs956572, significantly modulates the expression of Bcl-2 protein and cellular vulnerability to apoptosis. We tested the hypothesis that this SNP would modulate gray matter (GM) volume in the limbic-cortical-striatal-pallidal-thalamic circuitry that plays major roles in mood regulation. Methods: Forty-seven healthy subjects participated in this study (30 A carriers, 17 G homozygotes). Neuromorphometric differences between G homozygotes and A carriers were investigated using optimized voxel-based morphometry (VBM). Statistical significance was set at p<.05, corrected for multiple comparisons. Results: A carriers showed less GM volume than G homozygotes in the left ventral striatum (p(corrected)<.05). Conclusions: Genetic variation in the Bcl-2 gene modulates GM volume in areas known to play key roles in the neurobiology of reward processes and emotion regulation and in the pathophysiology of mood disorders. Thus, the findings from the current study are noteworthy insofar as they converge with preclinical findings that Bcl-2 functions to enhance neuronal viability and might indirectly extend this evidence to humans
    corecore