21 research outputs found

    Charge and heat transport in ionic conductors

    Get PDF
    Transport coefficients relate the off-equilibrium flow of locally conserved quantities, such as charge, energy, and momentum, to gradients of intensive thermodynamic variables in the linear regime. Despite their mathematical formalization dating back to the middle of the last century, when Green and Kubo developed linear response theory, some conceptual subtleties were only recently understood through the formulation of the gauge-invariance and convective-invariance principles. In a nutshell, these invariance principles suggest that transport coefficients are mostly independent of the microscopic definition of the densities and currents. In this thesis, we analyze the consequences of gauge and convective invariances on the charge and heat-transport properties of ionic conductors. The combination of gauge invariance with Thouless' theorem on charge quantization reconciles Faraday's picture of ionic charge transport---whereby each atom carries a well-defined integer charge---with a rigorous quantum-mechanical definition of atomic oxidation states. The latter are topological invariants depending on the paths traced by the coordinates of nuclei in the atomic configuration space. When some general topological conditions are relaxed, we show that oxidation states lose their meaning, and charge can be adiabatically transported across macroscopic distances without a net ionic displacement. This allows for a classification of the different regimes of ionic transport in terms of the topological properties of the electronic structure of the conducting material. Invariance principles also allow one to compute thermal conductivity in multicomponent materials such as ionic conductors through equilibrium molecular dynamics simulations. In particular, heat management is of paramount importance in solid-state electrolytes, solid materials relevant for the production of next-generation batteries, where ionic conduction is mediated by diffusing vacancies and defects. The aforementioned conceptual difficulties in the theory of thermal transport are the root cause of a lack of systematic exploration of such properties in solid-state electrolytes. We showcase the ability of the invariance principles to overcome these issues together with state-of-the-art data analysis techniques in the paradigmatic example of the Li-ion conductor Li3ClO. We provide a simple rationale to explain the temperature and vacancy-concentration dependence of its thermal conductivity, which can be interpreted as the result of the interplay of a crystalline component and a contribution from the effective disorder generated by ionic diffusion

    Thermal transport of glasses via machine learning driven simulations

    Get PDF
    Accessing the thermal transport properties of glasses is a major issue for the design of production strategies of glass industry, as well as for the plethora of applications and devices where glasses are employed. From the computational standpoint, the chemical and morphological complexity of glasses calls for atomistic simulations where the interatomic potentials are able to capture the variety of local environments, composition, and (dis)order that typically characterize glassy phases. Machine-learning potentials (MLPs) are emerging as a valid alternative to computationally expensive ab initio simulations, inevitably run on very small samples which cannot account for disorder at different scales, as well as to empirical force fields, fast but often reliable only in a narrow portion of the thermodynamic and composition phase diagrams. In this article, we make the point on the use of MLPs to compute the thermal conductivity of glasses, through a review of recent theoretical and computational tools and a series of numerical applications on vitreous silica and vitreous silicon, both pure and intercalated with lithium

    Thermal transport of glasses via machine learning driven simulations

    Full text link
    Accessing the thermal transport properties of glasses is a major issue for the design of production strategies of glass industry, as well as for the plethora of applications and devices where glasses are employed. From the computational standpoint, the chemical and morphological complexity of glasses calls for atomistic simulations where the interatomic potentials are able to capture the variety of local environments, composition, and (dis)order that typically characterize glassy phases. Machine-learning potentials (MLPs) are emerging as a valid alternative to computationally expensive ab initio simulations, inevitably run on very small samples which cannot account for disorder at different scales, as well as to empirical force fields, fast but often reliable only in a narrow portion of the thermodynamic and composition phase diagrams. In this article, we make the point on the use of MLPs to compute the thermal conductivity of glasses, through a review of recent theoretical and computational tools and a series of numerical applications on vitreous silica and vitreous silicon, both pure and intercalated with lithium.Comment: 11 pages, 6 figures. Supplementary Material as ancillary fil

    Topology, Oxidation States, and Charge Transport in Ionic Conductors

    Get PDF
    Recent theoretical advances, based on a combination of concepts from Thouless' topological theory of adiabatic charge transport and a newly introduced gauge-invariance principle for transport coefficients, have permitted to connect (and reconcile) Faraday's picture of ionic transport—whereby each atom carries a well-defined integer charge—with a rigorous quantum description of the electronic charge-density distribution, which hardly suggests its partition into well defined atomic contributions. In this paper, these progresses are reviewed; in particular, it is shown how, by relaxing some general topological conditions, charge may be transported in ionic conductors without any net ionic displacements. After reporting numerical experiments which corroborate these findings, a new connection between the topological picture and the well-known Marcus–Hush theory of electron transfer is introduced in terms of the topology of adiabatic paths drawn by atomic trajectories. As a significant byproduct, the results reviewed here permit to classify different regimes of ionic transport according to the topological properties of the electronic structure of the conducting material. Finally, a few recent applications to energy materials and planetary sciences are reported

    Self-interaction and transport of solvated electrons in molten salts

    Get PDF
    The dynamics of (few) electrons dissolved in an ionic fluid-as when a small amount of metal is added to a solution while upholding its electronic insulation-manifests interesting properties that can be ascribed to nontrivial topological features of particle transport (e.g., Thouless' pumps). In the adiabatic regime, the charge distribution and the dynamics of these dissolved electrons are uniquely determined by the nuclear configuration. Yet, their localization into effective potential wells and their diffusivity are dictated by how the self-interaction is modeled. In this article, we investigate the role of self-interaction in the description of the localization and transport properties of dissolved electrons in non-stoichiometric molten salts. Although the account for the exact (Fock) exchange strongly localizes the dissolved electrons, decreasing their tunneling probability and diffusivity, we show that the dynamics of the ions and of the dissolved electrons are largely uncorrelated, irrespective of the degree to which the electron self-interaction is treated and in accordance with topological arguments

    Genetic and genomic analyses of latent variables related to the milk fatty acid profile, milk composition, and udder health in dairy cattle

    Get PDF
    The aim of this study was to perform genetic, genome-wide association (GWAS), and gene-set enrichment analyses with latent variables related to milk fatty acid profile (i.e., fatty acids factor scores; FAF), milk composition, and udder health in a cohort of 1,158 Italian Brown Swiss cows. The phenotypes under study were 12 FAF previously identified through factor analysis and classified as follows: de novo FA (F1), branched-chain FA-milk yield (F2), biohydrogenation (F3), long-chain fatty acids (F4), desaturation (F5), short-chain fatty acids (F6), milk protein and fat contents (F7), odd fatty acids (F8), conjugated linoleic acids (F9), linoleic acid (F10), udder health (F11) and vaccelenic acid (F12). (Co)variance components were estimated for factor scores using a Bayesian linear animal model via Gibbs sampling. The animals were genotyped with the Illumina BovineSNP50 BeadChip v.2 (Illumina Inc., San Diego, CA). A single marker regression model was fitted for GWAS analysis. The gene-set enrichment analysis was run on the GWAS results using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway databases to identify the ontologies and pathways associated with the FAF. Marginal posterior means of the heritabilities of the aforementioned FAF ranged from 0.048 for F12 to 0.310 for F5. Factors F1 and F6 had the highest number of relevant genetic correlations with the other traits. The genomic analysis detected a total of 39 significant SNP located on 17 Bos taurus autosomes. All latent variables produced signals except for F2 and F10. The traits with the highest number of significant associations were F11 (17) and F12 (7). Gene-set enrichment analyses identified significant pathways (false discovery rate 5%) for F3 and F7. In particular, systemic lupus erythematosus was enriched for F3, whereas the MAPK (mitogen-activated protein kinase) signaling pathway was overrepresented for F7. The results support the existence of important and exploitable genetic and genomic variation in these latent explanatory phenotypes. Information acquired might be exploited in selection programs and when designing further studies on the role of the putative candidate genes identified in the regulation of milk composition and udder health

    Using high density EEG to assess TMS treatment in patients with schizophrenia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadWe present preliminary results from the ongoing study entitled "Icelandic AVH-TMS" which aim is to study the effectiveness of repetitive transcranial magnetic stimulation (rTMS) treatment for patients with schizophrenia and with persistent auditory verbal hallucinations (AVH) using symptoms and psychometric scales and high-density EEG system (256 channels). The aim of the present work was to describe cortical topography of the auditory evoked responses like P50 and N100-P300 complex in healthy participants and patients with schizophrenia and to define a robust methodology of signal quantification using dense-array EEG. Preliminary data is shown for three healthy participants and three patients in baseline conditions and for two patients we show the results recorded before and after 10 days rTMS treatment. Our results show differences in sensory gating (P50 suppresion) and a stronger N100-P300 response to rare audio stimulus after the treatment. Moreover we show the value of assessing brain electrical activity from high-density EEG (256 channels) analyzing the results in different regions of interest. However, it is premature and hazardous to assume that rTMS treatment effectiveness in patients with AVH can be assessed using P50 suppression ratio. Keywords: P300; P50; Transcranial magnetic stimulation; high density EEG; schizophrenia

    Topology, oxidation states, and charge transport in ionic conductors

    Full text link
    Recent theoretical advances, based on a combination of concepts from Thouless' topological theory of adiabatic charge transport and a newly introduced gauge-invariance principle for transport coefficients, have permitted to connect (and reconcile) Faraday's picture of ionic transport -- whereby each atom carries a well-defined integer charge -- with a rigorous quantum description of the electronic charge-density distribution, which hardly suggests its partition into well defined atomic contributions. In this paper we review these progress and in particular that, by relaxing some general topological conditions, charge may be transported in ionic conductors without any net ionic displacements. After reporting numerical experiments which corroborate these findings, we introduce a new connection between our topological picture and the well-known Marcus-Hush theory of electron transfer, which we are able to connect with the topology of adiabatic paths drawn by atomic trajectories. As a significant byproduct, the results reviewed here permit to classify different regimes of ionic transport according to the topological properties of the electronic structure of the conducting material. We finally report on a few recent applications to energy materials and planetary sciences.Comment: 16 pages, 9 figure

    Hydrodynamic finite-size scaling of the thermal conductivity in glasses

    No full text
    Abstract In the past few years, the theory of thermal transport in amorphous solids has been substantially extended beyond the Allen-Feldman model. The resulting formulation, based on the Green-Kubo linear response or the Wigner-transport equation, bridges this model for glasses with the traditional Boltzmann kinetic approach for crystals. The computational effort required by these methods usually scales as the cube of the number of atoms, thus severely limiting the size range of computationally affordable glass models. Leveraging hydrodynamic arguments, we show how this issue can be overcome through a simple formula to extrapolate a reliable estimate of the bulk thermal conductivity of glasses from finite models of moderate size. We showcase our findings for realistic models of paradigmatic glassy materials

    Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

    No full text
    Despite governing heat management in any realistic device, the microscopic mechanisms of heat transport in all-solid-state electrolytes are poorly known: existing calculations, all based on simplistic semi-empirical models, are unreliable for superionic conductors and largely overestimate their thermal conductivity. In this work, we deploy a combination of state-of-the-art methods to calculate the thermal conductivity of a prototypical Li-ion conductor, the Li3ClO antiperovskite. By leveraging ab initio, machine learning, and force-field descriptions of interatomic forces, we are able to reveal the massive role of anharmonic interactions and diffusive defects on the thermal conductivity and its temperature dependence, and to eventually embed their effects into a simple rationale which is likely applicable to a wide class of ionic conductors
    corecore