2,198 research outputs found

    Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Get PDF
    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure, a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active Myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.Comment: 17 pages, 6 figures; added references, modified and corrected Figs. 1 and 3, corrected typos, expanded discussio

    Asymptotic safety in higher-derivative gravity

    Full text link
    We study the non-perturbative renormalization group flow of higher-derivative gravity employing functional renormalization group techniques. The non-perturbative contributions to the β\beta-functions shift the known perturbative ultraviolet fixed point into a non-trivial fixed point with three UV-attractive and one UV-repulsive eigendirections, consistent with the asymptotic safety conjecture of gravity. The implication of this transition on the unitarity problem, typically haunting higher-derivative gravity theories, is discussed.Comment: 8 pages; 1 figure; revised versio

    Joblessness

    Get PDF
    The U.S. labor market has been experiencing unprecedented high average unemployment duration. The shift in the unemployment duration distribution can be traced back to the early nineties. In this paper, censored quantile regression methods are employed to analyze the changes in the US unemployment duration distribution. We explore the decomposition method proposed by Machado and Mata (2005) to disentangle the contribution of compositional vis-à-vis structural changes. The data used in this inquiry are taken from the nationally representative Displaced Worker Surveys of 1988 and 2008. Apart from the effect of economic improvement we find that the sensitivity of joblessness duration to education and the aging of the population were the two main forces behind the increase of the unemployment duration, in the last twenty years. We tentatively argue that firms use education as a signaling device during recessions, but the signaling power of education during the recent low-unemployment environment faded significantly.

    On the renormalization group flow of f(R)-gravity

    Full text link
    We use the functional renormalization group equation for quantum gravity to construct a non-perturbative flow equation for modified gravity theories of the form S=ddxgf(R)S = \int d^dx \sqrt{g} f(R). Based on this equation we show that certain gravitational interactions monomials can be consistently decoupled from the renormalization group (RG) flow and reproduce recent results on the asymptotic safety conjecture. The non-perturbative RG flow of non-local extensions of the Einstein-Hilbert truncation including ddxgln(R)\int d^dx \sqrt{g} \ln(R) and ddxgRn\int d^dx \sqrt{g} R^{-n} interactions is investigated in detail. The inclusion of such interactions resolves the infrared singularities plaguing the RG trajectories with positive cosmological constant in previous truncations. In particular, in some RnR^{-n}-truncations all physical trajectories emanate from a Non-Gaussian (UV) fixed point and are well-defined on all RG scales. The RG flow of the ln(R)\ln(R)-truncation contains an infrared attractor which drives a positive cosmological constant to zero dynamically.Comment: 55 pages, 7 figures, typos corrected, references added, version to appear in Phys. Rev.
    corecore