4 research outputs found

    Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Get PDF
    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments

    Neotropical xenarthrans: a dataset of occurrence of xenarthran species in the Neotropics.

    No full text
    International audienceXenarthrans—anteaters, sloths, and armadillos—have essential functions forecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosys-tem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts withdomestic dogs, these species have been threatened locally, regionally, or even across their fulldistribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae(3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data onDasypus pilo-sus(Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized,but new genetic studies have revealed that the group is represented by seven species. In thisdata paper, we compiled a total of 42,528 records of 31 species, represented by occurrence andquantitative data, totaling 24,847 unique georeferenced records. The geographic range is fromthe southern United States, Mexico, and Caribbean countries at the northern portion of theNeotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regardinganteaters,Myrmecophaga tridactylahas the most records (n=5,941), andCyclopessp. havethe fewest (n=240). The armadillo species with the most data isDasypus novemcinctus(n=11,588), and the fewest data are recorded forCalyptophractus retusus(n=33). Withregard to sloth species,Bradypus variegatushas the most records (n=962), andBradypus pyg-maeushas the fewest (n=12). Our main objective with Neotropical Xenarthrans is to makeoccurrence and quantitative data available to facilitate more ecological research, particularly ifwe integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, andNeotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure,habitat loss, fragmentation effects, species invasion, and climate change effects will be possiblewith the Neotropical Xenarthrans data set. Please cite this data paper when using its data inpublications. We also request that researchers and teachers inform us of how they are usingthese data
    corecore