6 research outputs found

    Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films

    No full text
    Lithium ion-conducting glasses attract wide interest for electrochemical applications like efficient energy storage devices. This work presents a structural study on involved bonding units, based on X-ray photoelectron spectroscopy and infrared spectroscopy, of lithium phosphorus oxide and oxynitride amorphous thin films prepared by RF magnetron sputtering. A thorough consideration of the mid- and far-infrared spectral regions demonstrated structural changes at the phosphate units and the lithium ion environments triggered by nitrogen incorporation and post-deposition thermal treatment. It was found that films prepared by sputtering in pure nitrogen atmosphere have about 75 % of their nitrogen atoms in sites doubly coordinated with phosphorus (P–N=P), and the rest in triply coordinated sites. It was shown also that nitrogen incorporation favors the stability of lithium ions, while annealing enhances ionic conductivity of the oxynitride films

    Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    No full text
    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. The scope of this review includes the monovalent lithium-and sodium-ion chemistries that are currently of the most commercial interest

    Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review

    No full text
    corecore