57 research outputs found
A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent
This study describes the development of a new colorimetric assay to determine aromatic amino acid aminotransferase (ArAT) activity. The assay is based on the transamination of l-tryptophan in the presence of 2-oxoglutarate, which yields indole-3-pyruvate (IPyA). The amount of IPyA formed was quantified by reaction with the Salkowski reagent. Optimized assay conditions are presented for ArAT isozymes isolated from Pseudomonas putida. For comparative purposes, ArAT activity was also determined by high-performance liquid chromatography. ArAT activity staining in polyacrylamide gels with the Salkowski reagent is also presented
Determination of Preferred pH for Root-knot Nematode Aggregation Using Pluronic F-127 Gel
Root-knot nematodes (Meloidogyne spp.) are obligate endoparasites of a wide range of plant species. The infective stage is attracted strongly to and enters host roots at the zone of elongation, but the compounds responsible for this attraction have not been identified. We developed a simple assay to investigate nematode response to chemical gradients that uses Pluronic F-127, a synthetic block copolymer that, as a 23% aqueous solution, forms a liquid at low temperature and a gel at room temperature. Test chemicals are put into a modified pipette tip, or ‘chemical dispenser,’ and dispensers are inserted into the gel in which nematodes have been dispersed. Meloidogyne hapla is attracted to pH gradients formed by acetic acid and several other Brønsted acids and aggregates between pH 4.5 and 5.4. While this pH range was attractive to all tested root-knot nematode strains and species, the level of aggregation depended on the species/strain assessed. For actively growing roots, the pH at the root surface is most acidic at the zone of elongation. This observation is consistent with the idea that low pH is an attractant for nematodes. Root-knot nematodes have been reported to be attracted to carbon dioxide, but our experiments suggest that the observed attraction may be due to acidification of solutions by dissolved CO2 rather than to CO2 itself. These results suggest that Pluronic F-127 gel will be broadly applicable for examining responses of a range of organisms to chemical gradients or to each other
Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
- …