4,661 research outputs found

    The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas

    Get PDF
    Edible microalgae have potential as low-cost cell factories for the production and oral delivery of recombinant proteins such as vaccines, anti-bacterials and gut-active enzymes that are beneficial to farmed animals including livestock, poultry and fish. However, a major economic and technical problem associated with large-scale cultivation of microalgae, even in closed photobioreactors, is invasion by contaminating microorganisms. Avoiding this requires costly media sterilisation, aseptic techniques during set-up and implementation of 'crop-protection' strategies during cultivation. Here, we report a strain improvement approach in which the chloroplast of Chlamydomonas reinhardtii is engineered to allow oxidation of phosphite to its bio-available form: phosphate. We have designed a synthetic version of the bacterial gene (ptxD)-encoding phosphite oxidoreductase such that it is highly expressed in the chloroplast but has a Trpā†’Opal codon reassignment for bio-containment of the transgene. Under mixotrophic conditions, the growth rate of the engineered alga is unaffected when phosphate is replaced with phosphite in the medium. Furthermore, under non-sterile conditions, growth of contaminating microorganisms is severely impeded in phosphite medium. This, therefore, offers the possibility of producing algal biomass under non-sterile conditions. The ptxD gene can also serve as a dominant marker for genetic engineering of any C. reinhardtii strain, thereby avoiding the use of antibiotic resistance genes as markers and allowing the 'retro-fitting' of existing engineered strains. As a proof of concept, we demonstrate the application of our ptxD technology to a strain expressing a subunit vaccine targeting a major viral pathogen of farmed fish

    Evaluating the Impact of Physiological Variability in Genome-Wide Association Studies of Resting Heart Rate

    Get PDF
    Genome-wide association studies (GWAS) have discovered hundreds of genetic loci for resting heart rate (RHR). However, the impact of intra-individual variation in RHR on GWAS results is unclear. We evaluated this impact by analyzing two RHR recordings from N 61,000 subjects from UK Biobank. In addition, we modelled variations in RHR as independent white zero-mean Gaussian noise with a standard deviation of 0.5x, 1x, and 2x the standard deviation of the difference between the original RHR values (4,8, and 16 bpm, respectively). The two original RHR recordings were highly correlated (? =0.77), but results from the genetic analyses were s lightly different: the number of genome-wide significant (p < 5x10-8) variants at the locus with the strongest reported association (MYH6): n=39 vs. n=34; the p-value of the corresponding lead-variant, 3.6x10-24 vs. 2.1x10-19; and the estimated heritability 20.0% vs. 16.7%. Simulated data showed an inverse relationship between RHR variation and genetic association strength and heritability. Results formally demonstrate the impact of intra-individual RHR variability on the discovery of genetic variants in single-measurement studies

    Interaction between ECG and Genetic Markers of Coronary Artery Disease

    Get PDF
    Coronary artery disease (CAD) is the main contributor to cardiovascular mortality in developed countries, making accurate diagnosis of utmost importance. We developed risk scores to assess CAD risk in a population without known cardiovascular disease by combining ECG and a genetic risk score (GRS) for CAD. We analysed data in 52,260 individuals in the UK Biobank study. ECG indices included heart rate, PR, QRS, QT and T-peak-to-T-end intervals, while we built the GRS from publicly available genome-wide association results for CAD that were derived in an independent population. In a training set (N = 39,195), the indices with the strongest CAD prognostic impact were the PR and QT intervals, and the GRS. When combined together into a Multivariate model, both the ECG markers and the GRS were independently associated with CAD. In an independent test set (N = 13,065), we then built three risk scores based on (1) ECG markers, (2) genetic data, and (3) a combination of ECG and genetic data, respectively. The hazard ratio (95% confidence interval) for CAD comparing high versus low-risk individuals was 6.5 (5.1 - 8.3),8.4 (6.4 - 10.8) and 8.4 (6.5 - 10.8) for the three risk scores, respectively. In conclusion, the inclusion of genetic markers into risk scores with ECG markers independently contributes to CAD risk prediction in a large population of individuals without known cardiovascular disease

    Analysing electrocardiographic traits and predicting cardiac risk in UK biobank.

    Get PDF
    The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information

    Premature atrial and ventricular contractions detected on wearable-format electrocardiograms and prediction of cardiovascular events.

    Get PDF
    AIMS: Wearable devices are transforming the electrocardiogram (ECG) into a ubiquitous medical test. This study assesses the association between premature ventricular and atrial contractions (PVCs and PACs) detected on wearable-format ECGs (15 s single lead) and cardiovascular outcomes in individuals without cardiovascular disease (CVD). METHODS AND RESULTS: Premature atrial contractions and PVCs were identified in 15 s single-lead ECGs from N = 54 016 UK Biobank participants (median age, interquartile range, age 58, 50-63 years, 54% female). Cox regression models adjusted for traditional risk factors were used to determine associations with atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), stroke, life-threatening ventricular arrhythmias (LTVAs), and mortality over a period of 11.5 (11.4-11.7) years. The strongest associations were found between PVCs (prevalence 2.2%) and HF (hazard ratio, HR, 95% confidence interval = 2.09, 1.58-2.78) and between PACs (prevalence 1.9%) and AF (HR = 2.52, 2.11-3.01), with shorter prematurity further increasing risk. Premature ventricular contractions and PACs were also associated with LTVA (P < 0.05). Associations with MI, stroke, and mortality were significant only in unadjusted models. In a separate UK Biobank sub-study sample [UKB-2, N = 29,324, age 64, 58-60 years, 54% female, follow-up 3.5 (2.6-4.8) years] used for independent validation, after adjusting for risk factors, PACs were associated with AF (HR = 1.80, 1.12-2.89) and PVCs with HF (HR = 2.32, 1.28-4.22). CONCLUSION: In middle-aged individuals without CVD, premature contractions identified in 15 s single-lead ECGs are strongly associated with an increased risk of AF and HF. These data warrant further investigation to assess the role of wearable ECGs for early cardiovascular risk stratification

    A Method to Minimise the Impact of ECG Marker Inaccuracies on the Spatial QRS-T angle: Evaluation on 1,512 Manually Annotated ECGs

    Get PDF
    Ā© 2020 The Author(s) The spatial QRS-T angle (QRS-Ta) derived from the vectorcardiogram (VCG) is a strong risk predictor for ventricular arrhythmia and sudden cardiac death with potential use for mass screening. Accurate QRS-Ta estimation in the presence of ECG delineation errors is crucial for its deployment as a prognostic test. Our study assessed the effect of inaccurate QRS and T-wave marker placement on QRS-Ta estimation and proposes a robust method for its calculation. Reference QRS-Ta measurements were derived from 1,512 VCGs manually annotated by three expert reviewers. We systematically changed onset and offset timings of QRS and T-wave markers to simulate inaccurate placement. The QRS-Ta was recalculated using a standard approach and our proposed algorithm, which limits the impact of VCG marker inaccuracies by defining the vector origin as an interval preceding QRS-onset and redefines the beginning and end of QRS and T-wave loops. Using the standard approach, mean absolute errors (MAE) in peak QRS-Ta were >40% and sensitivity and precision in the detection of abnormality (>105Ā°) were 15 ms. Using our proposed algorithm, MAE for peak QRS-Ta were reduced to 94% for inaccuracies up to Ā±15 ms. Similar results were obtained for mean QRS-Ta. In conclusion, inaccuracies of QRS and T-wave markers can significantly influence the QRS-Ta. Our proposed algorithm provides robust QRS-Ta measurements in the presence of inaccurate VCG annotation, enabling its use in large datasets

    Examining a staging model for anorexia nervosa: empirical exploration of a four stage model of severity.

    Get PDF
    Background: An illness staging model for anorexia nervosa (AN) has received increasing attention, but assessing the merits of this concept is dependent on empirically examining a model in clinical samples. Building on preliminary findings regarding the reliability and validity of the Clinician Administered Staging Instrument for Anorexia Nervosa (CASIAN), the current study explores operationalising CASIAN severity scores into stages and assesses their relationship with other clinical features. Method: In women with DSM-IV-R AN and sub-threshold AN (all met AN criteria using DSM 5), receiver operating curve (ROC) analysis (nĀ =Ā 67) assessed the relationship between the sensitivity and specificity of each stage of the CASIAN. Thereafter chi-square and post-hoc adjusted residual analysis provided a preliminary assessment of the validity of the stages comparing the relationship between stage and treatment intensity and AN sub-types, and explored movement between stages after six months (Time 3) in a larger cohort (nĀ =Ā 171). Results: The CASIAN significantly distinguished between milder stages of illness (Stage 1 and 2) versus more severe stages of illness (Stages 3 and 4), and approached statistical significance in distinguishing each of the four stages from one other. CASIAN Stages were significantly associated with treatment modality and primary diagnosis, and CASIAN Stage at Time 1 was significantly associated with Stage at 6Ā month follow-up. Conclusions: Provisional support is provided for a staging model in AN. Larger studies with longer follow-up of cases are now needed to replicate and extend these findings and evaluate the overall utility of staging as well as optimal staging models

    Intracellular zinc depletion induces caspase activation and p21Waf1/Cip1 cleavage in human epithelial cell lines

    Get PDF
    To better understand the mechanisms by which zinc deficiency induces epithelial cell death, studies were done of the effects of intracellular zinc depletion induced by the zinc chelator TPEN on apoptosis-related events in human malignant epithelial cell lines LIM1215 (colonic), NCI-H292 (bronchial), and A549 (alveolar type II). In TPEN-treated cells, depletion of zinc was followed by activation of caspase-3 (as demonstrated by enzymatic assay and Western blotting), DNA fragmentation, and morphologic changes. Increase in caspase-3 activity began 1ā€“2 h after addition of TPEN, suggesting that zinc may suppress a step just before the activation of this caspase. Caspase-6, a mediator of caspase-3 processing, also increased, but later than caspase-3. Effects of TPEN on apoptosis were completely prevented by exogenous ZnSO4 and partially prevented by peptide caspase inhibitors. A critical substrate of caspase-3 may be the cell cycle regulator p21Waf1/Cip1, which was rapidly cleaved in TPEN-treated cells to a 15-kDa fragment before further degradation.F. Chai, A. Q. Truong-Tran, A. Evdokiou, G. P. Young and P. D. Zalewsk

    Antonio Gramsciā€™s impact on critical pedagogy

    Get PDF
    This paper provides an account of Antonio Gramsciā€™s impact on the area of critical pedagogy. It indicates the Gramscian influence on the thinking of major exponents of the field. It foregrounds Gramsci's ideas and then indicates how they have been taken up by a selection of critical pedagogy exponents who were chosen on the strength of their identification and engagement with Gramsci's ideas, some of them even having written entire essays on Gramsci. The essay concludes with a discussion concerning an aspect of Gramsci's concerns, the question of powerful knowledge, which, in the present author's view, provides a formidable challenge to critical pedagogues.peer-reviewe
    • ā€¦
    corecore