128 research outputs found
Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K-m of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport
Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro
INTRODUCTION: Se-methylselenocysteine (MSC), a naturally occurring selenium compound, is a promising chemopreventive agent against in vivo and in vitro models of carcinogen-induced mouse and rat mammary tumorigenesis. We have demonstrated previously that MSC induces apoptosis after a cell growth arrest in S phase in a mouse mammary epithelial tumor cell model (TM6 cells) in vitro. The present study was designed to examine the involvement of the phosphatidylinositol 3-kinase (PI3-K) pathway in TM6 tumor model in vitro after treatment with MSC. METHODS: Synchronized TM6 cells treated with MSC and collected at different time points were examined for PI3-K activity and Akt phosphorylation along with phosphorylations of Raf, MAP kinase/ERK kinase (MEK), extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The growth inhibition was determined with a [(3)H]thymidine incorporation assay. Immunoblotting and a kinase assay were used to examine the molecules of the survival pathway. RESULTS: PI3-K activity was inhibited by MSC followed by dephosphorylation of Akt. The phosphorylation of p38 MAPK was also downregulated after these cells were treated with MSC. In parallel experiments MSC inhibited the Raf–MEK–ERK signaling pathway. CONCLUSION: These studies suggest that MSC blocks multiple signaling pathways in mouse mammary tumor cells. MSC inhibits cell growth by inhibiting the activity of PI3-K and its downstream effector molecules in mouse mammary tumor cells in vitro
Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants
Sodium selenite is used to prevent selenium deficiency known as nutritional muscular dystrophy or white muscle disease. In ruminants, selenium supplements are transformed partiality in insoluble form by ruminal microorganisms and its process decrease the selenium absorption in digestive gastrointestinal. However, the objective in this research was focused in encapsulated sodium selenite to be release into of a pH less than four, similarity to an intestinal environment. It was encapsulated by nanoprecipitation and emulsion–evaporation methods, within polymeric nanoparticles. The effect of these methods, polymer proportion (Eudragit RL and RS) and solvent (ethanol and acetone) on the physicochemical (drug entrapment, polidispersity index (PDI) and z potential) and morphological characteristics (particle morphology and particle size) were evaluated. Particle size from each nanoparticles, formulation ranged from 36.64 to 213.86 nm. Particle size, z potential and PDI increased (P ≤ 0.01) when nanoprecipitation and ethanol were used. No significant differences (P > 0.05) were observed when different polymeric proportions were used. Selenium entrapment was 26% when emulsion–evaporation method was used and 78% with nanoprecipitation. Nanoparticles produced by nanoprecipitation were spherical and had a great variation in particle size; on the other hand, nanoparticles produced by emulsion–evaporation were spherical as well as amorphous and presented a homogeneous nanopartcicle size distribution. The release of selenium from nanoparticles was higher in acid pH (less than 4), this condition may represent a better availability of the mineral in the small intestine
The plausibility of a role for mercury in the etiology of autism: a cellular perspective
Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed
How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food
The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations
The Effects of Oral Consumption of Selenium Nanoparticles on Chemotactic and Respiratory Burst Activities of Neutrophils in Comparison with Sodium Selenite in Sheep
The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities
The expression of selenium-binding protein 1 is decreased in uterine leiomyoma
<p>Abstract</p> <p>Background</p> <p>Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma.</p> <p>Methods</p> <p>Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma.</p> <p>Results and Discussion</p> <p>The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium.</p> <p>Conclusions</p> <p>Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine leiomyoma.</p
Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles
The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2
Determinants of selenium status in healthy adults
<p>Abstract</p> <p>Background</p> <p>Selenium (Se) status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed.</p> <p>Methods</p> <p>Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se) were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15), dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106) and women (n = 155).</p> <p>Conclusions</p> <p>Plasma Se concentration was 142.0 ± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys), but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg<sup>0.75</sup>), plasma folate, vitamin B<sub>12 </sub>and hCys (negatively). One <it>GPX1 </it>genotype (679T/T) was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.</p
A Whole-Genome SNP Association Study of NCI60 Cell Line Panel Indicates a Role of Ca2+ Signaling in Selenium Resistance
Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis
- …