18 research outputs found

    Prospective research in infants with mild encephalopathy identified in the first six hours of life: neurodevelopmental outcomes at 18-22 months

    No full text
    BACKGROUND: Studies of early childhood outcomes of mild hypoxic-ischemic encephalopathy (HIE) identified in the first 6 h of life are lacking. OBJECTIVE: To evaluate neurodevelopmental outcomes at 18-22 months of PRIME study. STUDY DESIGN: Multicenter, prospective study of mild HIE defined as ≥1 abnormality using the modified Sarnat within 6 h of birth and not meeting cooling criteria. Primary outcome was disability with mild: Bayley III cognitive 70-84 or ≥85 and either Gross Motor Function Classification System (GMFCS) 1 or 2, seizures, or hearing deficit; moderate: cognitive 70-84 and either GMFCS 2, seizures, or hearing deficit; severe: cognitive <70, GMFCS 3-5. RESULTS: Of the 63 infants enrolled, 51 (81%) were evaluated at 19 ± 2 months and 43 (68%) completed Bayley III. Of the 43 infants, 7 (16%) were diagnosed with disability, including 1 cerebral palsy and 2 autism. Bayley scores < 85 in either cognition, motor, or language were detected in 17 (40%): 14 (32%) language, 7 (16%) cognitive, and 6 (14%) motor domain. Infants with disability had more abnormalities on discharge examination and brain MRI, with longer hospital stay (p < 0.001). CONCLUSIONS: In this contemporary untreated cohort of mild HIE, disability occurred in 16% of infants at 18-22 months

    Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere

    No full text
    The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how ‘Candidatus Liberibacter asiaticus' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that ‘Ca. L. asiaticus' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in ‘Ca. L. asiaticus'-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of ‘Ca. L. asiaticus' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the ‘Ca. L. asiaticus'-infected citrus rhizosphere. Our results showed that the microbial community of the ‘Ca. L. asiaticus'-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by ‘Ca. L. asiaticus' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability of citrus-producing agro-ecosystems

    The Association Between Artificial Sweeteners and Obesity

    No full text
    The purpose of this paper is to review the epidemiology of obesity and the evolution of artificial sweeteners; to examine the latest research on the effects of artificial sweeteners on the host microbiome, the gut-brain axis, glucose homeostasis, and energy consumption; and to discuss how all of these changes ultimately contribute to obesity. Although artificial sweeteners were developed as a sugar substitute to help reduce insulin resistance and obesity, data in both animal models and humans suggest that the effects of artificial sweeteners may contribute to metabolic syndrome and the obesity epidemic. Artificial sweeteners appear to change the host microbiome, lead to decreased satiety, and alter glucose homeostasis, and are associated with increased caloric consumption and weight gain. Artificial sweeteners are marketed as a healthy alternative to sugar and as a tool for weight loss. Data however suggests that the intended effects do not correlate with what is seen in clinical practice. Future research should focus on the newer plant-based sweeteners, incorporate extended study durations to determine the long-term effects of artificial sweetener consumption, and focus on changes in the microbiome, as that seems to be one of the main driving forces behind nutrient absorption and glucose metabolism
    corecore