43 research outputs found

    First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands

    Get PDF
    Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor

    Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with <it>Escherichia coli </it>and to evaluate the possible carry-over effect when same animals are used in an experimental model.</p> <p>Methods</p> <p>Mastitis was induced with a dose of 1500 cfu of <it>E. coli </it>in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) were determined in serum and milk.</p> <p>Results</p> <p>In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the <it>E. coli </it>infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by <it>E. coli</it>.</p> <p>Conclusion</p> <p>Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary induction of the same animals with <it>E. coli </it>is used in cross-over studies, the interval between challenges should be longer than 2 weeks, due to the carry-over effect from the first infection.</p

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled
    corecore